In this paper, we consider the network slicing (NS) problem which attempts to map multiple customized virtual network requests to a common shared network infrastructure and allocate network resources to meet diverse service requirements. We propose an efficient decomposition algorithm for solving this NP-hard problem. The proposed algorithm decomposes the large-scale hard NS problem into two relatively easy function placement (FP) and traffic routing (TR) subproblems and iteratively solves them enabling information feedback between each other, which makes it particularly suitable to solve large-scale problems. Specifically, the FP subproblem is to place service functions into cloud nodes in the network, and solving it can return a function placement strategy based on which the TR subproblem is defined; and the TR subproblem is to find paths connecting two nodes hosting two adjacent functions in the network, and solving it can either verify that the solution of the FP subproblem is an optimal solution of the original problem, or return a valid inequality to the FP subproblem that cuts off the current infeasible solution. The proposed algorithm is guaranteed to find the global solution of the NS problem. We demonstrate the effectiveness and efficiency of the proposed algorithm via numerical experiments.
We tackle the data scarcity challenge in few-shot point cloud recognition of 3D objects by using a joint prediction from a conventional 3D model and a well-trained 2D model. Surprisingly, such an ensemble, though seems trivial, has hardly been shown effective in recent 2D-3D models. We find out the crux is the less effective training for the ''joint hard samples'', which have high confidence prediction on different wrong labels, implying that the 2D and 3D models do not collaborate well. To this end, our proposed invariant training strategy, called InvJoint, does not only emphasize the training more on the hard samples, but also seeks the invariance between the conflicting 2D and 3D ambiguous predictions. InvJoint can learn more collaborative 2D and 3D representations for better ensemble. Extensive experiments on 3D shape classification with widely adopted ModelNet10/40, ScanObjectNN and Toys4K, and shape retrieval with ShapeNet-Core validate the superiority of our InvJoint.
As the dawn of sixth-generation (6G) networking approaches, it promises unprecedented advancements in communication and automation. Among the leading innovations of 6G is the concept of Zero Touch Networks (ZTNs), aiming to achieve fully automated, self-optimizing networks with minimal human intervention. Despite the advantages ZTNs offer in terms of efficiency and scalability, challenges surrounding transparency, adaptability, and human trust remain prevalent. Concurrently, the advent of Large Language Models (LLMs) presents an opportunity to elevate the ZTN framework by bridging the gap between automated processes and human-centric interfaces. This paper explores the integration of LLMs into ZTNs, highlighting their potential to enhance network transparency and improve user interactions. Through a comprehensive case study on deep reinforcement learning (DRL)-based anti-jamming technique, we demonstrate how LLMs can distill intricate network operations into intuitive, human-readable reports. Additionally, we address the technical and ethical intricacies of melding LLMs with ZTNs, with an emphasis on data privacy, transparency, and bias reduction. Looking ahead, we identify emerging research avenues at the nexus of LLMs and ZTNs, advocating for sustained innovation and interdisciplinary synergy in the domain of automated networks.
This paper investigates the multiple-input-multiple-output (MIMO) massive unsourced random access in an asynchronous orthogonal frequency division multiplexing (OFDM) system, with both timing and frequency offsets (TFO) and non-negligible user collisions. The proposed coding framework splits the data into two parts encoded by sparse regression code (SPARC) and low-density parity check (LDPC) code. Multistage orthogonal pilots are transmitted in the first part to reduce collision density. Unlike existing schemes requiring a quantization codebook with a large size for estimating TFO, we establish a \textit{graph-based channel reconstruction and collision resolution (GB-CR$^2$)} algorithm to iteratively reconstruct channels, resolve collisions, and compensate for TFO rotations on the formulated graph jointly among multiple stages. We further propose to leverage the geometric characteristics of signal constellations to correct TFO estimations. Exhaustive simulations demonstrate remarkable performance superiority in channel estimation and data recovery with substantial complexity reduction compared to state-of-the-art schemes.
Delay alignment modulation (DAM) is a promising technology to achieve ISI-free wideband communication, by leveraging delay compensation and path-based beamforming, rather than the conventional channel equalization or multi-carrier transmission. In particular, when there exist a few strong time-dispersive channel paths, DAM can effectively align different propagation delays and achieve their constructive superposition, thus especially appealing for intelligent reflecting surfaces (IRSs)-aided communications with controllable multi-paths. In this paper, we apply DAM to multi-IRS aided wideband communication and study its practical design and achievable performance. We first provide an asymptotic analysis showing that when the number of base station (BS) antennas is much larger than that of IRSs, an ISI-free channel can be established with appropriate delay pre-compensation and the simple path-based MRT beamforming. We then consider the general system setup and study the problem of joint path-based beamforming and phase shifts design for DAM transmission, by considering the three classical beamforming techniques on a per-path basis, namely the low-complexity path-based MRT beamforming, the path-based ZF beamforming for ISI-free DAM communication, and the optimal path-based MMSE beamforming. As a comparison, OFDM-based multi-IRS aided communication is considered. Simulation results demonstrate that DAM outperforms OFDM in terms of spectral efficiency, BER, and PAPR.
Conversational recommendation systems (CRS) effectively address information asymmetry by dynamically eliciting user preferences through multi-turn interactions. Existing CRS widely assumes that users have clear preferences. Under this assumption, the agent will completely trust the user feedback and treat the accepted or rejected signals as strong indicators to filter items and reduce the candidate space, which may lead to the problem of over-filtering. However, in reality, users' preferences are often vague and volatile, with uncertainty about their desires and changing decisions during interactions. To address this issue, we introduce a novel scenario called Vague Preference Multi-round Conversational Recommendation (VPMCR), which considers users' vague and volatile preferences in CRS.VPMCR employs a soft estimation mechanism to assign a non-zero confidence score for all candidate items to be displayed, naturally avoiding the over-filtering problem. In the VPMCR setting, we introduce an solution called Adaptive Vague Preference Policy Learning (AVPPL), which consists of two main components: Uncertainty-aware Soft Estimation (USE) and Uncertainty-aware Policy Learning (UPL). USE estimates the uncertainty of users' vague feedback and captures their dynamic preferences using a choice-based preferences extraction module and a time-aware decaying strategy. UPL leverages the preference distribution estimated by USE to guide the conversation and adapt to changes in users' preferences to make recommendations or ask for attributes. Our extensive experiments demonstrate the effectiveness of our method in the VPMCR scenario, highlighting its potential for practical applications and improving the overall performance and applicability of CRS in real-world settings, particularly for users with vague or dynamic preferences.
The calibration for deep neural networks is currently receiving widespread attention and research. Miscalibration usually leads to overconfidence of the model. While, under the condition of long-tailed distribution of data, the problem of miscalibration is more prominent due to the different confidence levels of samples in minority and majority categories, and it will result in more serious overconfidence. To address this problem, some current research have designed diverse temperature coefficients for different categories based on temperature scaling (TS) method. However, in the case of rare samples in minority classes, the temperature coefficient is not generalizable, and there is a large difference between the temperature coefficients of the training set and the validation set. To solve this challenge, this paper proposes a dual-branch temperature scaling calibration model (Dual-TS), which considers the diversities in temperature parameters of different categories and the non-generalizability of temperature parameters for rare samples in minority classes simultaneously. Moreover, we noticed that the traditional calibration evaluation metric, Excepted Calibration Error (ECE), gives a higher weight to low-confidence samples in the minority classes, which leads to inaccurate evaluation of model calibration. Therefore, we also propose Equal Sample Bin Excepted Calibration Error (Esbin-ECE) as a new calibration evaluation metric. Through experiments, we demonstrate that our model yields state-of-the-art in both traditional ECE and Esbin-ECE metrics.
Graph neural networks (GNNs) have shown significant accuracy improvements in a variety of graph learning domains, sparking considerable research interest. To translate these accuracy improvements into practical applications, it is essential to develop high-performance and efficient hardware acceleration for GNN models. However, designing GNN accelerators faces two fundamental challenges: the high bandwidth requirement of GNN models and the diversity of GNN models. Previous works have addressed the first challenge by using more expensive memory interfaces to achieve higher bandwidth. For the second challenge, existing works either support specific GNN models or have generic designs with poor hardware utilization. In this work, we tackle both challenges simultaneously. First, we identify a new type of partition-level operator fusion, which we utilize to internally reduce the high bandwidth requirement of GNNs. Next, we introduce partition-level multi-threading to schedule the concurrent processing of graph partitions, utilizing different hardware resources. To further reduce the extra on-chip memory required by multi-threading, we propose fine-grained graph partitioning to generate denser graph partitions. Importantly, these three methods make no assumptions about the targeted GNN models, addressing the challenge of model variety. We implement these methods in a framework called SwitchBlade, consisting of a compiler, a graph partitioner, and a hardware accelerator. Our evaluation demonstrates that SwitchBlade achieves an average speedup of $1.85\times$ and energy savings of $19.03\times$ compared to the NVIDIA V100 GPU. Additionally, SwitchBlade delivers performance comparable to state-of-the-art specialized accelerators.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.