亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We establish central limit theorems for principal eigenvalues and eigenvectors under a large factor model setting, and develop two-sample tests of both principal eigenvalues and principal eigenvectors. One important application is to detect structural breaks in large factor models. Compared with existing methods for detecting structural breaks, our tests provide unique insights into the source of structural breaks because they can distinguish between individual principal eigenvalues and/or eigenvectors. We demonstrate the application by comparing the principal eigenvalues and principal eigenvectors of S\&P500 Index constituents' daily returns over different years.

相關內容

When the target of inference is a real-valued function of probability parameters in the k-sample multinomial problem, variance estimation may be challenging. In small samples, methods like the nonparametric bootstrap or delta method may perform poorly. We propose a novel general method in this setting for computing exact p-values and confidence intervals which means that type I error rates are correctly bounded and confidence intervals have at least nominal coverage at all sample sizes. Our method is applicable to any real-valued function of multinomial probabilities, accommodating an arbitrary number of samples with varying category counts. We describe the method and provide an implementation of it in R, with some computational optimization to ensure broad applicability. Simulations demonstrate our method's ability to maintain correct coverage rates in settings where the nonparametric bootstrap fails.

This note discusses a simple modification of cross-conformal prediction inspired by recent work on e-values. The precursor of conformal prediction developed in the 1990s by Gammerman, Vapnik, and Vovk was also based on e-values and is called conformal e-prediction in this note. Replacing e-values by p-values led to conformal prediction, which has important advantages over conformal e-prediction without obvious disadvantages. The situation with cross-conformal prediction is, however, different: whereas for cross-conformal prediction validity is only an empirical fact (and can be broken with excessive randomization), this note draws the reader's attention to the obvious fact that cross-conformal e-prediction enjoys a guaranteed property of validity.

A non-linear complex system governed by multi-spatial and multi-temporal physics scales cannot be fully understood with a single diagnostic, as each provides only a partial view and much information is lost during data extraction. Combining multiple diagnostics also results in imperfect projections of the system's physics. By identifying hidden inter-correlations between diagnostics, we can leverage mutual support to fill in these gaps, but uncovering these inter-correlations analytically is too complex. We introduce a groundbreaking machine learning methodology to address this issue. Our multimodal approach generates super resolution data encompassing multiple physics phenomena, capturing detailed structural evolution and responses to perturbations previously unobservable. This methodology addresses a critical problem in fusion plasmas: the Edge Localized Mode (ELM), a plasma instability that can severely damage reactor walls. One method to stabilize ELM is using resonant magnetic perturbation to trigger magnetic islands. However, low spatial and temporal resolution of measurements limits the analysis of these magnetic islands due to their small size, rapid dynamics, and complex interactions within the plasma. With super-resolution diagnostics, we can experimentally verify theoretical models of magnetic islands for the first time, providing unprecedented insights into their role in ELM stabilization. This advancement aids in developing effective ELM suppression strategies for future fusion reactors like ITER and has broader applications, potentially revolutionizing diagnostics in fields such as astronomy, astrophysics, and medical imaging.

Quantum low-density parity-check codes are a promising candidate for fault-tolerant quantum computing with considerably reduced overhead compared to the surface code. However, the lack of a practical decoding algorithm remains a barrier to their implementation. In this work, we introduce localized statistics decoding, a reliability-guided inversion decoder that is highly parallelizable and applicable to arbitrary quantum low-density parity-check codes. Our approach employs a parallel matrix factorization strategy, which we call on-the-fly elimination, to identify, validate, and solve local decoding regions on the decoding graph. Through numerical simulations, we show that localized statistics decoding matches the performance of state-of-the-art decoders while reducing the runtime complexity for operation in the sub-threshold regime. Importantly, our decoder is more amenable to implementation on specialized hardware, positioning it as a promising candidate for decoding real-time syndromes from experiments.

This paper presents a multivariate normal integral expression for the joint survival function of the cumulated components of any multinomial random vector. This result can be viewed as a multivariate analog of Equation (7) from Carter & Pollard (2004), who improved Tusn\'ady's inequality. Our findings are based on a crucial relationship between the joint survival function of the cumulated components of any multinomial random vector and the joint cumulative distribution function of a corresponding Dirichlet distribution. We offer two distinct proofs: the first expands the logarithm of the Dirichlet density, while the second employs Laplace's method applied to the Dirichlet integral.

Rational approximation is a powerful tool to obtain accurate surrogates for nonlinear functions that are easy to evaluate and linearize. The interpolatory adaptive Antoulas--Anderson (AAA) method is one approach to construct such approximants numerically. For large-scale vector- and matrix-valued functions, however, the direct application of the set-valued variant of AAA becomes inefficient. We propose and analyze a new sketching approach for such functions called sketchAAA that, with high probability, leads to much better approximants than previously suggested approaches while retaining efficiency. The sketching approach works in a black-box fashion where only evaluations of the nonlinear function at sampling points are needed. Numerical tests with nonlinear eigenvalue problems illustrate the efficacy of our approach, with speedups above 200 for sampling large-scale black-box functions without sacrificing on accuracy.

Practical parameter identifiability in ODE-based epidemiological models is a known issue, yet one that merits further study. It is essentially ubiquitous due to noise and errors in real data. In this study, to avoid uncertainty stemming from data of unknown quality, simulated data with added noise are used to investigate practical identifiability in two distinct epidemiological models. Particular emphasis is placed on the role of initial conditions, which are assumed unknown, except those that are directly measured. Instead of just focusing on one method of estimation, we use and compare results from various broadly used methods, including maximum likelihood and Markov Chain Monte Carlo (MCMC) estimation. Among other findings, our analysis revealed that the MCMC estimator is overall more robust than the point estimators considered. Its estimates and predictions are improved when the initial conditions of certain compartments are fixed so that the model becomes globally identifiable. For the point estimators, whether fixing or fitting the that are not directly measured improves parameter estimates is model-dependent. Specifically, in the standard SEIR model, fixing the initial condition for the susceptible population S(0) improved parameter estimates, while this was not true when fixing the initial condition of the asymptomatic population in a more involved model. Our study corroborates the change in quality of parameter estimates upon usage of pre-peak or post-peak time-series under consideration. Finally, our examples suggest that in the presence of significantly noisy data, the value of structural identifiability is moot.

In relational verification, judicious alignment of computational steps facilitates proof of relations between programs using simple relational assertions. Relational Hoare logics (RHL) provide compositional rules that embody various alignments of executions. Seemingly more flexible alignments can be expressed in terms of product automata based on program transition relations. A single degenerate alignment rule (self-composition), atop a complete Hoare logic, comprises a RHL for $\forall\forall$ properties that is complete in the ordinary logical sense (Cook'78). The notion of alignment completeness was previously proposed as a more satisfactory measure, and some rules were shown to be alignment complete with respect to a few ad hoc forms of alignment automata. This paper proves alignment completeness with respect to a general class of $\forall\forall$ alignment automata, for a RHL comprised of standard rules together with a rule of semantics-preserving rewrites based on Kleene algebra with tests. A new logic for $\forall\exists$ properties is introduced and shown to be alignment complete. The $\forall\forall$ and $\forall\exists$ automata are shown to be semantically complete. Thus the logics are both complete in the ordinary sense. Recent work by D'Osualdo et al highlights the importance of completeness relative to assumptions (which we term entailment completeness), and presents $\forall\forall$ examples seemingly beyond the scope of RHLs. Additional rules enable these examples to be proved in our RHL, shedding light on the open problem of entailment completeness.

We consider the problem of analyzing multivariate time series collected on multiple subjects, with the goal of identifying groups of subjects exhibiting similar trends in their recorded measurements over time as well as time-varying groups of associated measurements. To this end, we propose a Bayesian model for temporal biclustering featuring nested partitions, where a time-invariant partition of subjects induces a time-varying partition of measurements. Our approach allows for data-driven determination of the number of subject and measurement clusters as well as estimation of the number and location of changepoints in measurement partitions. To efficiently perform model fitting and posterior estimation with Markov Chain Monte Carlo, we derive a blocked update of measurements' cluster-assignment sequences. We illustrate the performance of our model in two applications to functional magnetic resonance imaging data and to an electroencephalogram dataset. The results indicate that the proposed model can combine information from potentially many subjects to discover a set of interpretable, dynamic patterns. Experiments on simulated data compare the estimation performance of the proposed model against ground-truth values and other statistical methods, showing that it performs well at identifying ground-truth subject and measurement clusters even when no subject or time dependence is present.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司