In this paper we study the type IV Knorr Held space time models. Such models typically apply intrinsic Markov random fields and constraints are imposed for identifiability. INLA is an efficient inference tool for such models where constraints are dealt with through a conditioning by kriging approach. When the number of spatial and/or temporal time points become large, it becomes computationally expensive to fit such models, partly due to the number of constraints involved. We propose a new approach, HyMiK, dividing constraints into two separate sets where one part is treated through a mixed effect approach while the other one is approached by the standard conditioning by kriging method, resulting in a more efficient procedure for dealing with constraints. The new approach is easy to apply based on existing implementations of INLA. We run the model on simulated data, on a real data set containing dengue fever cases in Brazil and another real data set of confirmed positive test cases of Covid-19 in the counties of Norway. For all cases we get very similar results when comparing the new approach with the tradition one while at the same time obtaining a significant increase in computational speed, varying on a factor from 2 to 4, depending on the sizes of the data sets.
Polynomial kernel regression is one of the standard and state-of-the-art learning strategies. However, as is well known, the choices of the degree of polynomial kernel and the regularization parameter are still open in the realm of model selection. The first aim of this paper is to develop a strategy to select these parameters. On one hand, based on the worst-case learning rate analysis, we show that the regularization term in polynomial kernel regression is not necessary. In other words, the regularization parameter can decrease arbitrarily fast when the degree of the polynomial kernel is suitable tuned. On the other hand,taking account of the implementation of the algorithm, the regularization term is required. Summarily, the effect of the regularization term in polynomial kernel regression is only to circumvent the " ill-condition" of the kernel matrix. Based on this, the second purpose of this paper is to propose a new model selection strategy, and then design an efficient learning algorithm. Both theoretical and experimental analysis show that the new strategy outperforms the previous one. Theoretically, we prove that the new learning strategy is almost optimal if the regression function is smooth. Experimentally, it is shown that the new strategy can significantly reduce the computational burden without loss of generalization capability.
Moment restrictions and their conditional counterparts emerge in many areas of machine learning and statistics ranging from causal inference to reinforcement learning. Estimators for these tasks, generally called methods of moments, include the prominent generalized method of moments (GMM) which has recently gained attention in causal inference. GMM is a special case of the broader family of empirical likelihood estimators which are based on approximating a population distribution by means of minimizing a $\varphi$-divergence to an empirical distribution. However, the use of $\varphi$-divergences effectively limits the candidate distributions to reweightings of the data samples. We lift this long-standing limitation and provide a method of moments that goes beyond data reweighting. This is achieved by defining an empirical likelihood estimator based on maximum mean discrepancy which we term the kernel method of moments (KMM). We provide a variant of our estimator for conditional moment restrictions and show that it is asymptotically first-order optimal for such problems. Finally, we show that our method achieves competitive performance on several conditional moment restriction tasks.
The mean-field Langevin dynamics (MFLD) is a nonlinear generalization of the Langevin dynamics that incorporates a distribution-dependent drift, and it naturally arises from the optimization of two-layer neural networks via (noisy) gradient descent. Recent works have shown that MFLD globally minimizes an entropy-regularized convex functional in the space of measures. However, all prior analyses assumed the infinite-particle or continuous-time limit, and cannot handle stochastic gradient updates. We provide an general framework to prove a uniform-in-time propagation of chaos for MFLD that takes into account the errors due to finite-particle approximation, time-discretization, and stochastic gradient approximation. To demonstrate the wide applicability of this framework, we establish quantitative convergence rate guarantees to the regularized global optimal solution under (i) a wide range of learning problems such as neural network in the mean-field regime and MMD minimization, and (ii) different gradient estimators including SGD and SVRG. Despite the generality of our results, we achieve an improved convergence rate in both the SGD and SVRG settings when specialized to the standard Langevin dynamics.
We present an effective and efficient approach for low-light image enhancement, named Lookup Table Global Curve Estimation (LUT-GCE). In contrast to existing curve-based methods with pixel-wise adjustment, we propose to estimate a global curve for the entire image that allows corrections for both under- and over-exposure. Specifically, we develop a novel cubic curve formulation for light enhancement, which enables an image-adaptive and pixel-independent curve for the range adjustment of an image. We then propose a global curve estimation network (GCENet), a very light network with only 25.4k parameters. To further speed up the inference speed, a lookup table method is employed for fast retrieval. In addition, a novel histogram smoothness loss is designed to enable zero-shot learning, which is able to improve the contrast of the image and recover clearer details. Quantitative and qualitative results demonstrate the effectiveness of the proposed approach. Furthermore, our approach outperforms the state of the art in terms of inference speed, especially on high-definition images (e.g., 1080p and 4k).
The Poisson-Boltzmann equation (PBE) is an implicit solvent continuum model for calculating the electrostatic potential and energies of ionic solvated biomolecules. However, its numerical solution remains a significant challenge due strong singularities and nonlinearity caused by the singular source terms and the exponential nonlinear terms, respectively. An efficient method for the treatment of singularities in the linear PBE was introduced in \cite{BeKKKS:18}, that is based on the RS tensor decomposition for both electrostatic potential and the discretized Dirac delta distribution. In this paper, we extend this regularization method to the nonlinear PBE. We apply the PBE only to the regular part of the solution corresponding to the modified right-hand side via extraction of the long-range part in the discretized Dirac delta distribution. The total electrostatic potential is obtained by adding the long-range solution to the directly precomputed short-range potential. The main computational benefit of the approach is the automatic maintaining of the continuity in the Cauchy data on the solute-solvent interface. The boundary conditions are also obtained from the long-range component of the precomputed canonical tensor representation of the Newton kernel. In the numerical experiments, we illustrate the accuracy of the nonlinear regularized PBE (NRPBE) over the classical variant.
We study collaborative normal mean estimation, where $m$ strategic agents collect i.i.d samples from a normal distribution $\mathcal{N}(\mu, \sigma^2)$ at a cost. They all wish to estimate the mean $\mu$. By sharing data with each other, agents can obtain better estimates while keeping the cost of data collection small. To facilitate this collaboration, we wish to design mechanisms that encourage agents to collect a sufficient amount of data and share it truthfully, so that they are all better off than working alone. In naive mechanisms, such as simply pooling and sharing all the data, an individual agent might find it beneficial to under-collect and/or fabricate data, which can lead to poor social outcomes. We design a novel mechanism that overcomes these challenges via two key techniques: first, when sharing the others' data with an agent, the mechanism corrupts this dataset proportional to how much the data reported by the agent differs from the others; second, we design minimax optimal estimators for the corrupted dataset. Our mechanism, which is incentive compatible and individually rational, achieves a social penalty (sum of all agents' estimation errors and data collection costs) that is at most a factor 2 of the global minimum. When applied to high dimensional (non-Gaussian) distributions with bounded variance, this mechanism retains these three properties, but with slightly weaker results. Finally, in two special cases where we restrict the strategy space of the agents, we design mechanisms that essentially achieve the global minimum.
A drawback of the classic approach for complexity analysis of distributed graph problems is that it mostly informs about the complexity of notorious classes of ``worst case'' graphs. Algorithms that are used to prove a tight (existential) bound are essentially optimized to perform well on such worst case graphs. However, such graphs are often either unlikely or actively avoided in practice, where benign graph instances usually admit much faster solutions. To circumnavigate these drawbacks, the concept of universal complexity analysis in the distributed setting was suggested by [Kutten and Peleg, PODC'95] and actively pursued by [Haeupler et al., STOC'21]. Here, the aim is to gauge the complexity of a distributed graph problem depending on the given graph instance. The challenge is to identify and understand the graph property that allows to accurately quantify the complexity of a distributed problem on a given graph. In the present work, we consider distributed shortest paths problems in the HYBRID model of distributed computing, where nodes have simultaneous access to two different modes of communication: one is restricted by locality and the other is restricted by congestion. We identify the graph parameter of neighborhood quality and show that it accurately describes a universal bound for the complexity of certain class of shortest paths problems in the HYBRID model.
Diffusion models have demonstrated excellent potential for generating diverse images. However, their performance often suffers from slow generation due to iterative denoising. Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few without significant quality degradation. However, existing distillation methods either require significant amounts of offline computation for generating synthetic training data from the teacher model or need to perform expensive online learning with the help of real data. In this work, we present a novel technique called BOOT, that overcomes these limitations with an efficient data-free distillation algorithm. The core idea is to learn a time-conditioned model that predicts the output of a pre-trained diffusion model teacher given any time step. Such a model can be efficiently trained based on bootstrapping from two consecutive sampled steps. Furthermore, our method can be easily adapted to large-scale text-to-image diffusion models, which are challenging for conventional methods given the fact that the training sets are often large and difficult to access. We demonstrate the effectiveness of our approach on several benchmark datasets in the DDIM setting, achieving comparable generation quality while being orders of magnitude faster than the diffusion teacher. The text-to-image results show that the proposed approach is able to handle highly complex distributions, shedding light on more efficient generative modeling.
This work investigates the use of a Deep Neural Network (DNN) to perform an estimation of the Weapon Engagement Zone (WEZ) maximum launch range. The WEZ allows the pilot to identify an airspace in which the available missile has a more significant probability of successfully engaging a particular target, i.e., a hypothetical area surrounding an aircraft in which an adversary is vulnerable to a shot. We propose an approach to determine the WEZ of a given missile using 50,000 simulated launches in variate conditions. These simulations are used to train a DNN that can predict the WEZ when the aircraft finds itself on different firing conditions, with a coefficient of determination of 0.99. It provides another procedure concerning preceding research since it employs a non-discretized model, i.e., it considers all directions of the WEZ at once, which has not been done previously. Additionally, the proposed method uses an experimental design that allows for fewer simulation runs, providing faster model training.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.