Recommender systems usually leverage multi-task learning methods to simultaneously optimize several objectives because of the multi-faceted user behavior data. The typical way of conducting multi-task learning is to establish appropriate parameter sharing across multiple tasks at lower layers while reserving a separate task tower for each task at upper layers. Since the task towers exert direct impact on the prediction results, we argue that the architecture of standalone task towers is sub-optimal for promoting positive knowledge sharing. Accordingly, we propose the framework of Deep Mutual Learning across task towers, which is compatible with various backbone multi-task networks. Extensive offline experiments and online AB tests are conducted to evaluate and verify the proposed approach's effectiveness.
Submodular maximization under various constraints is a fundamental problem studied continuously, in both computer science and operations research, since the late $1970$'s. A central technique in this field is to approximately optimize the multilinear extension of the submodular objective, and then round the solution. The use of this technique requires a solver able to approximately maximize multilinear extensions. Following a long line of work, Buchbinder and Feldman (2019) described such a solver guaranteeing $0.385$-approximation for down-closed constraints, while Oveis Gharan and Vondr\'ak (2011) showed that no solver can guarantee better than $0.478$-approximation. In this paper, we present a solver guaranteeing $0.401$-approximation, which significantly reduces the gap between the best known solver and the inapproximability result. The design and analysis of our solver are based on a novel bound that we prove for DR-submodular functions. This bound improves over a previous bound due to Feldman et al. (2011) that is used by essentially all state-of-the-art results for constrained maximization of general submodular/DR-submodular functions. Hence, we believe that our new bound is likely to find many additional applications in related problems, and to be a key component for further improvement.
The development of trustworthy conversational information-seeking systems relies on dialogue models that can generate faithful and accurate responses based on relevant knowledge texts. However, two main challenges hinder this task. Firstly, language models may generate hallucinations due to data biases present in their pretraining corpus. Secondly, knowledge texts often contain redundant and irrelevant information that distracts the model's attention from the relevant text span. Previous works use additional data annotations on the knowledge texts to learn a knowledge identification module in order to bypass irrelevant information, but collecting such high-quality span annotations can be costly. In this work, we leverage reinforcement learning algorithms to overcome the above challenges by introducing a novel reward function. Our reward function combines an accuracy metric and a faithfulness metric to provide a balanced quality judgment of generated responses, which can be used as a cost-effective approximation to a human preference reward model when only a few preference annotations are available. Empirical experiments on two conversational information-seeking datasets demonstrate that our method can compete with other strong supervised learning baselines.
The objective of a two-stage submodular maximization problem is to reduce the ground set using provided training functions that are submodular, with the aim of ensuring that optimizing new objective functions over the reduced ground set yields results comparable to those obtained over the original ground set. This problem has applications in various domains including data summarization. Existing studies often assume the monotonicity of the objective function, whereas our work pioneers the extension of this research to accommodate non-monotone submodular functions. We have introduced the first constant-factor approximation algorithms for this more general case.
The moving discontinuous Galerkin method with interface condition enforcement (MDG-ICE) is a high-order, r-adaptive method that treats the grid as a variable and weakly enforces the conservation law, constitutive law, and corresponding interface conditions in order to implicitly fit high-gradient flow features. In this paper, we introduce nonlinear solver strategies to more robustly and efficiently compute high-speed viscous flows. Specifically, we incorporate an anisotropic grid regularization based on the mesh-implied metric into the nonlinear least-squares solver that inhibits grid motion in directions with small element length scales. Furthermore, we develop an adaptive elementwise regularization strategy that locally scales the regularization terms as needed to maintain grid validity. We apply the proposed MDG-ICE formulation to test cases involving viscous shocks and/or boundary layers, including Mach 17.6 hypersonic viscous flow over a circular cylinder and Mach 5 hypersonic viscous flow over a sphere, which are very challenging test cases for conventional numerical schemes on simplicial grids. Even without artificial dissipation, the computed solutions are free from spurious oscillations and yield highly symmetric surface heat-flux profiles.
The success of self-supervised contrastive learning hinges on identifying positive data pairs that, when pushed together in embedding space, encode useful information for subsequent downstream tasks. However, in time-series, this is challenging because creating positive pairs via augmentations may break the original semantic meaning. We hypothesize that if we can retrieve information from one subsequence to successfully reconstruct another subsequence, then they should form a positive pair. Harnessing this intuition, we introduce our novel approach: REtrieval-BAsed Reconstruction (REBAR) contrastive learning. First, we utilize a convolutional cross-attention architecture to calculate the REBAR error between two different time-series. Then, through validation experiments, we show that the REBAR error is a predictor of mutual class membership, justifying its usage as a positive/negative labeler. Finally, once integrated into a contrastive learning framework, our REBAR method can learn an embedding that achieves state-of-the-art performance on downstream tasks across various modalities.
Due to the limited availability of data, existing few-shot learning methods trained from scratch fail to achieve satisfactory performance. In contrast, large-scale pre-trained models such as CLIP demonstrate remarkable few-shot and zero-shot capabilities. To enhance the performance of pre-trained models for downstream tasks, fine-tuning the model on downstream data is frequently necessary. However, fine-tuning the pre-trained model leads to a decrease in its generalizability in the presence of distribution shift, while the limited number of samples in few-shot learning makes the model highly susceptible to overfitting. Consequently, existing methods for fine-tuning few-shot learning primarily focus on fine-tuning the model's classification head or introducing additional structure. In this paper, we introduce a fine-tuning approach termed Feature Discrimination Alignment (FD-Align). Our method aims to bolster the model's generalizability by preserving the consistency of spurious features across the fine-tuning process. Extensive experimental results validate the efficacy of our approach for both ID and OOD tasks. Once fine-tuned, the model can seamlessly integrate with existing methods, leading to performance improvements. Our code can be found in //github.com/skingorz/FD-Align.
This study presents a novel deep reinforcement learning (DRL)-based handover (HO) protocol, called DHO, specifically designed to address the persistent challenge of long propagation delays in low-Earth orbit (LEO) satellite networks' HO procedures. DHO skips the Measurement Report (MR) in the HO procedure by leveraging its predictive capabilities after being trained with a pre-determined LEO satellite orbital pattern. This simplification eliminates the propagation delay incurred during the MR phase, while still providing effective HO decisions. The proposed DHO outperforms the legacy HO protocol across diverse network conditions in terms of access delay, collision rate, and handover success rate, demonstrating the practical applicability of DHO in real-world networks. Furthermore, the study examines the trade-off between access delay and collision rate and also evaluates the training performance and convergence of DHO using various DRL algorithms.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.