亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) suffer from catastrophic forgetting during continual learning. Conventional rehearsal-based methods rely on previous training data to retain the model's ability, which may not be feasible in real-world applications. When conducting continual learning based on a publicly-released LLM checkpoint, the availability of the original training data may be non-existent. To address this challenge, we propose a framework called Self-Synthesized Rehearsal (SSR) that uses the LLM to generate synthetic instances for rehearsal. Concretely, we first employ the base LLM for in-context learning to generate synthetic instances. Subsequently, we utilize the latest LLM to refine the instance outputs based on the synthetic inputs, preserving its acquired ability. Finally, we select diverse high-quality synthetic instances for rehearsal in future stages. Experimental results demonstrate that SSR achieves superior or comparable performance compared to conventional rehearsal-based approaches while being more data-efficient. Besides, SSR effectively preserves the generalization capabilities of LLMs in general domains.

相關內容

大語(yu)言(yan)模(mo)型(xing)是基于(yu)海量文(wen)(wen)本數(shu)據訓練的(de)(de)(de)深(shen)度學習模(mo)型(xing)。它不(bu)(bu)僅能(neng)夠生成自(zi)然(ran)語(yu)言(yan)文(wen)(wen)本,還能(neng)夠深(shen)入理解文(wen)(wen)本含(han)義,處理各種(zhong)自(zi)然(ran)語(yu)言(yan)任(ren)務(wu),如文(wen)(wen)本摘要(yao)、問答、翻(fan)譯(yi)等(deng)。2023年,大語(yu)言(yan)模(mo)型(xing)及其(qi)在人工(gong)智能(neng)領(ling)域的(de)(de)(de)應用(yong)(yong)已成為(wei)全(quan)球科技研究(jiu)的(de)(de)(de)熱點,其(qi)在規模(mo)上(shang)的(de)(de)(de)增長尤為(wei)引(yin)人注目,參數(shu)量已從最初的(de)(de)(de)十幾億躍升到如今的(de)(de)(de)一萬億。參數(shu)量的(de)(de)(de)提升使得模(mo)型(xing)能(neng)夠更(geng)加精細地捕捉人類語(yu)言(yan)微妙之(zhi)處,更(geng)加深(shen)入地理解人類語(yu)言(yan)的(de)(de)(de)復雜(za)性。在過去的(de)(de)(de)一年里,大語(yu)言(yan)模(mo)型(xing)在吸納新知識(shi)、分解復雜(za)任(ren)務(wu)以及圖文(wen)(wen)對齊等(deng)多(duo)方面(mian)都有(you)顯著提升。隨(sui)著技術的(de)(de)(de)不(bu)(bu)斷成熟,它將不(bu)(bu)斷拓展其(qi)應用(yong)(yong)范圍,為(wei)人類提供更(geng)加智能(neng)化和(he)個性化的(de)(de)(de)服務(wu),進一步改善(shan)人們的(de)(de)(de)生活和(he)生產(chan)方式。

Large language models (LLMs) exhibit impressive natural language capabilities but suffer from hallucination -- generating content ungrounded in the realities of training data. Recent work has focused on decoding techniques to improve factuality during inference by leveraging LLMs' hierarchical representation of factual knowledge, manipulating the predicted distributions at inference time. Current state-of-the-art approaches refine decoding by contrasting early-exit distributions from a lower layer with the final layer to exploit information related to factuality within the model forward procedure. However, such methods often assume the final layer is the most reliable and the lower layer selection process depends on it. In this work, we first propose extrapolation of critical token probabilities beyond the last layer for more accurate contrasting. We additionally employ layer-wise entropy-guided lower layer selection, decoupling the selection process from the final layer. Experiments demonstrate strong performance - surpassing state-of-the-art on multiple different datasets by large margins. Analyses show different kinds of prompts respond to different selection strategies.

Sparse variational approximations are popular methods for scaling up inference and learning in Gaussian processes to larger datasets. For $N$ training points, exact inference has $O(N^3)$ cost; with $M \ll N$ features, state of the art sparse variational methods have $O(NM^2)$ cost. Recently, methods have been proposed using more sophisticated features; these promise $O(M^3)$ cost, with good performance in low dimensional tasks such as spatial modelling, but they only work with a very limited class of kernels, excluding some of the most commonly used. In this work, we propose integrated Fourier features, which extends these performance benefits to a very broad class of stationary covariance functions. We motivate the method and choice of parameters from a convergence analysis and empirical exploration, and show practical speedup in synthetic and real world spatial regression tasks.

Self-supervised learning through masked autoencoders (MAEs) has recently attracted great attention for remote sensing (RS) image representation learning, and thus embodies a significant potential for content-based image retrieval (CBIR) from ever-growing RS image archives. However, the existing studies on MAEs in RS assume that the considered RS images are acquired by a single image sensor, and thus are only suitable for uni-modal CBIR problems. The effectiveness of MAEs for cross-sensor CBIR, which aims to search semantically similar images across different image modalities, has not been explored yet. In this paper, we take the first step to explore the effectiveness of MAEs for sensor-agnostic CBIR in RS. To this end, we present a systematic overview on the possible adaptations of the vanilla MAE to exploit masked image modeling on multi-sensor RS image archives (denoted as cross-sensor masked autoencoders [CSMAEs]). Based on different adjustments applied to the vanilla MAE, we introduce different CSMAE models. We also provide an extensive experimental analysis of these CSMAE models. We finally derive a guideline to exploit masked image modeling for uni-modal and cross-modal CBIR problems in RS. The code of this work is publicly available at //github.com/jakhac/CSMAE.

Large language models (LLMs) are becoming increasingly important for machine learning applications. However, it can be challenging to align LLMs with our intent, particularly when we want to generate content that is preferable over others or when we want the LLM to respond in a certain style or tone that is hard to describe. To address this challenge, we propose an approach that uses contrastive examples to better describe our intent. This involves providing positive examples that illustrate the true intent, along with negative examples that show what characteristics we want LLMs to avoid. The negative examples can be retrieved from labeled data, written by a human, or generated by the LLM itself. Before generating an answer, we ask the model to analyze the examples to teach itself what to avoid. This reasoning step provides the model with the appropriate articulation of the user's need and guides it towards generting a better answer. We tested our approach on both synthesized and real-world datasets, including StackExchange and Reddit, and found that it significantly improves performance compared to standard few-shot prompting

Large language models (LLMs) have shown remarkable progress in automated code generation. Yet, incorporating LLM-based code generation into real-life software projects poses challenges, as the generated code may contain errors in API usage, class, data structure, or missing project-specific information. As much of this project-specific context cannot fit into the prompts of LLMs, we must find ways to allow the model to explore the project-level code context. To this end, this paper puts forward a novel approach, termed ProCoder, which iteratively refines the project-level code context for precise code generation, guided by the compiler feedback. In particular, ProCoder first leverages compiler techniques to identify a mismatch between the generated code and the project's context. It then iteratively aligns and fixes the identified errors using information extracted from the code repository. We integrate ProCoder with two representative LLMs, i.e., GPT-3.5-Turbo and Code Llama (13B), and apply it to Python code generation. Experimental results show that ProCoder significantly improves the vanilla LLMs by over 80% in generating code dependent on project context, and consistently outperforms the existing retrieval-based code generation baselines.

Efficient exploration remains a challenging problem in reinforcement learning, especially for tasks where extrinsic rewards from environments are sparse or even totally disregarded. Significant advances based on intrinsic motivation show promising results in simple environments but often get stuck in environments with multimodal and stochastic dynamics. In this work, we propose a variational dynamic model based on the conditional variational inference to model the multimodality and stochasticity. We consider the environmental state-action transition as a conditional generative process by generating the next-state prediction under the condition of the current state, action, and latent variable, which provides a better understanding of the dynamics and leads a better performance in exploration. We derive an upper bound of the negative log-likelihood of the environmental transition and use such an upper bound as the intrinsic reward for exploration, which allows the agent to learn skills by self-supervised exploration without observing extrinsic rewards. We evaluate the proposed method on several image-based simulation tasks and a real robotic manipulating task. Our method outperforms several state-of-the-art environment model-based exploration approaches.

Large language models (LLMs) enable in-context learning (ICL) by conditioning on a few labeled training examples as a text-based prompt, eliminating the need for parameter updates and achieving competitive performance. In this paper, we demonstrate that factual knowledge is imperative for the performance of ICL in three core facets: the inherent knowledge learned in LLMs, the factual knowledge derived from the selected in-context examples, and the knowledge biases in LLMs for output generation. To unleash the power of LLMs in few-shot learning scenarios, we introduce a novel Knowledgeable In-Context Tuning (KICT) framework to further improve the performance of ICL: 1) injecting knowledge into LLMs during continual self-supervised pre-training, 2) judiciously selecting the examples for ICL with high knowledge relevance, and 3) calibrating the prediction results based on prior knowledge. We evaluate the proposed approaches on autoregressive models (e.g., GPT-style LLMs) over multiple text classification and question-answering tasks. Experimental results demonstrate that KICT substantially outperforms strong baselines and improves by more than 13% and 7% on text classification and question-answering tasks, respectively.

Alignment with human preference prevents large language models (LLMs) from generating misleading or toxic content while requiring high-cost human feedback. Assuming resources of human annotation are limited, there are two different ways of allocating considered: more diverse PROMPTS or more diverse RESPONSES to be labeled. Nonetheless, a straightforward comparison between their impact is absent. In this work, we first control the diversity of both sides according to the number of samples for fine-tuning, which can directly reflect their influence. We find that instead of numerous prompts, more responses but fewer prompts better trigger LLMs for human alignment. Additionally, the concept of diversity for prompts can be more complex than responses that are typically quantified by single digits. Consequently, a new formulation of prompt diversity is proposed, further implying a linear correlation with the final performance of LLMs after fine-tuning. We also leverage it on data augmentation and conduct experiments to show its effect on different algorithms.

Large language models (LLMs) have shown their capabilities in understanding contextual and semantic information regarding knowledge of instance appearances. In this paper, we introduce a novel approach to utilize the strengths of LLMs in understanding contextual appearance variations and to leverage this knowledge into a vision model (here, pedestrian detection). While pedestrian detection is considered one of the crucial tasks directly related to our safety (e.g., intelligent driving systems), it is challenging because of varying appearances and poses in diverse scenes. Therefore, we propose to formulate language-derived appearance elements and incorporate them with visual cues in pedestrian detection. To this end, we establish a description corpus that includes numerous narratives describing various appearances of pedestrians and other instances. By feeding them through an LLM, we extract appearance knowledge sets that contain the representations of appearance variations. Subsequently, we perform a task-prompting process to obtain appearance elements which are guided representative appearance knowledge relevant to a downstream pedestrian detection task. The obtained knowledge elements are adaptable to various detection frameworks, so that we can provide plentiful appearance information by integrating the language-derived appearance elements with visual cues within a detector. Through comprehensive experiments with various pedestrian detectors, we verify the adaptability and effectiveness of our method showing noticeable performance gains and achieving state-of-the-art detection performance on two public pedestrian detection benchmarks (i.e., CrowdHuman and WiderPedestrian).

Large language models (LLMs) are able to solve various tasks with only a few demonstrations utilizing their in-context learning (ICL) abilities. However, LLMs often rely on their pre-trained semantic priors of demonstrations rather than on the input-label relationships to proceed with ICL prediction. In this work, we term this phenomenon as the 'Demonstration Shortcut'. While previous works have primarily focused on improving ICL prediction results for predefined tasks, we aim to rectify the Demonstration Shortcut, thereby enabling the LLM to effectively learn new input-label relationships from demonstrations. To achieve this, we introduce In-Context Calibration, a demonstration-aware calibration method. We evaluate the effectiveness of the proposed method in two settings: (1) the Original ICL Task using the standard label space and (2) the Task Learning setting, where the label space is replaced with semantically unrelated tokens. In both settings, In-Context Calibration demonstrates substantial improvements, with results generalized across three LLM families (OPT, GPT, and Llama2) under various configurations.

北京阿比特科技有限公司