亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce a fast Fourier-Galerkin method for solving boundary integral equations on torus-shaped surfaces, which are diffeomorphic to a torus. We analyze the properties of the integral operator's kernel to derive the decay pattern of the entries in the representation matrix. Leveraging this decay pattern, we devise a truncation strategy that efficiently compresses the dense representation matrix of the integral operator into a sparser form containing only $\mathcal{O}(N\ln^2 N)$ nonzero entries, where $N$ denotes the degrees of freedom of the discretization method. We prove that this truncation strategy achieves a quasi-optimal convergence order of $\mathcal{O}(N^{-p/2}\ln N)$, with $p$ representing the degree of regularity of the exact solution to the boundary integral equation. Additionally, we confirm that the truncation strategy preserves stability throughout the solution process. Numerical experiments validate our theoretical findings and demonstrate the effectiveness of the proposed method.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

In this study, we introduce a deep-learning approach for determining both the 6DoF pose and 3D size of strawberries, aiming to significantly augment robotic harvesting efficiency. Our model was trained on a synthetic strawberry dataset, which is automatically generated within the Ignition Gazebo simulator, with a specific focus on the inherent symmetry exhibited by strawberries. By leveraging domain randomization techniques, the model demonstrated exceptional performance, achieving an 84.77\% average precision (AP) of 3D Intersection over Union (IoU) scores on the simulated dataset. Empirical evaluations, conducted by testing our model on real-world datasets, underscored the model's viability for real-world strawberry harvesting scenarios, even though its training was based on synthetic data. The model also exhibited robust occlusion handling abilities, maintaining accurate detection capabilities even when strawberries were obscured by other strawberries or foliage. Additionally, the model showcased remarkably swift inference speeds, reaching up to 60 frames per second (FPS).

In this paper, we propose a quasi-Newton method for solving smooth and monotone nonlinear equations, including unconstrained minimization and minimax optimization as special cases. For the strongly monotone setting, we establish two global convergence bounds: (i) a linear convergence rate that matches the rate of the celebrated extragradient method, and (ii) an explicit global superlinear convergence rate that provably surpasses the linear convergence rate after at most ${O}(d)$ iterations, where $d$ is the problem's dimension. In addition, for the case where the operator is only monotone, we prove a global convergence rate of ${O}(\min\{{1}/{k},{\sqrt{d}}/{k^{1.25}}\})$ in terms of the duality gap. This matches the rate of the extragradient method when $k = {O}(d^2)$ and is faster when $k = \Omega(d^2)$. These results are the first global convergence results to demonstrate a provable advantage of a quasi-Newton method over the extragradient method, without querying the Jacobian of the operator. Unlike classical quasi-Newton methods, we achieve this by using the hybrid proximal extragradient framework and a novel online learning approach for updating the Jacobian approximation matrices. Specifically, guided by the convergence analysis, we formulate the Jacobian approximation update as an online convex optimization problem over non-symmetric matrices, relating the regret of the online problem to the convergence rate of our method. To facilitate efficient implementation, we further develop a tailored online learning algorithm based on an approximate separation oracle, which preserves structures such as symmetry and sparsity in the Jacobian matrices.

In this paper, we propose a generalized shift-splitting (GSS) preconditioner, along with its two relaxed variants to solve the double saddle point problem (DSPP). The convergence of the associated GSS iterative method is analyzed, and sufficient conditions for its convergence are established. Spectral analyses are performed to derive sharp bounds for the eigenvalues of the preconditioned matrices. Numerical experiments based on examples arising from the PDE-constrained optimization problems demonstrate the effectiveness and robustness of the proposed preconditioners compared with existing state-of-the-art preconditioners.

We present a constructive universal approximation theorem for learning machines equipped with joint-group-equivariant feature maps, based on the group representation theory. ``Constructive'' here indicates that the distribution of parameters is given in a closed-form expression known as the ridgelet transform. Joint-group-equivariance encompasses a broad class of feature maps that generalize classical group-equivariance. Notably, this class includes fully-connected networks, which are not group-equivariant but are joint-group-equivariant. Moreover, our main theorem also unifies the universal approximation theorems for both shallow and deep networks. While the universality of shallow networks has been investigated in a unified manner by the ridgelet transform, the universality of deep networks has been investigated in a case-by-case manner.

In this paper, we introduce a new finite expression method (FEX) to solve high-dimensional partial integro-differential equations (PIDEs). This approach builds upon the original FEX and its inherent advantages with new advances: 1) A novel method of parameter grouping is proposed to reduce the number of coefficients in high-dimensional function approximation; 2) A Taylor series approximation method is implemented to significantly improve the computational efficiency and accuracy of the evaluation of the integral terms of PIDEs. The new FEX based method, denoted FEX-PG to indicate the addition of the parameter grouping (PG) step to the algorithm, provides both high accuracy and interpretable numerical solutions, with the outcome being an explicit equation that facilitates intuitive understanding of the underlying solution structures. These features are often absent in traditional methods, such as finite element methods (FEM) and finite difference methods, as well as in deep learning-based approaches. To benchmark our method against recent advances, we apply the new FEX-PG to solve benchmark PIDEs in the literature. In high-dimensional settings, FEX-PG exhibits strong and robust performance, achieving relative errors on the order of single precision machine epsilon.

In this study, we consider the problem of predicting task success for open-vocabulary manipulation by a manipulator, based on instruction sentences and egocentric images before and after manipulation. Conventional approaches, including multimodal large language models (MLLMs), often fail to appropriately understand detailed characteristics of objects and/or subtle changes in the position of objects. We propose Contrastive $\lambda$-Repformer, which predicts task success for table-top manipulation tasks by aligning images with instruction sentences. Our method integrates the following three key types of features into a multi-level aligned representation: features that preserve local image information; features aligned with natural language; and features structured through natural language. This allows the model to focus on important changes by looking at the differences in the representation between two images. We evaluate Contrastive $\lambda$-Repformer on a dataset based on a large-scale standard dataset, the RT-1 dataset, and on a physical robot platform. The results show that our approach outperformed existing approaches including MLLMs. Our best model achieved an improvement of 8.66 points in accuracy compared to the representative MLLM-based model.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司