Deviating from conventional perspectives that frame artificial intelligence (AI) systems solely as logic emulators, we propose a novel program of heuristic reasoning. We distinguish between the 'instrumental' use of heuristics to match resources with objectives, and 'mimetic absorption,' whereby heuristics manifest randomly and universally. Through a series of innovative experiments, including variations of the classic Linda problem and a novel application of the Beauty Contest game, we uncover trade-offs between maximizing accuracy and reducing effort that shape the conditions under which AIs transition between exhaustive logical processing and the use of cognitive shortcuts (heuristics). We provide evidence that AIs manifest an adaptive balancing of precision and efficiency, consistent with principles of resource-rational human cognition as explicated in classical theories of bounded rationality and dual-process theory. Our findings reveal a nuanced picture of AI cognition, where trade-offs between resources and objectives lead to the emulation of biological systems, especially human cognition, despite AIs being designed without a sense of self and lacking introspective capabilities.
Massive multiple input multiple output (M-MIMO) technology plays a pivotal role in fifth-generation (5G) and beyond communication systems, offering a wide range of benefits, from increased spectral efficiency (SE) to enhanced energy efficiency and higher reliability. However, these advantages are contingent upon precise channel state information (CSI) availability at the base station (BS). Ensuring precise CSI is challenging due to the constrained size of the coherence interval and the resulting limitations on pilot sequence length. Therefore, reusing pilot sequences in adjacent cells introduces pilot contamination, hindering SE enhancement. This paper reviews recent advancements and addresses research challenges in mitigating pilot contamination and improving channel estimation, categorizing the existing research into three broader categories: pilot assignment schemes, advanced signal processing methods, and advanced channel estimation techniques. Salient representative pilot mitigation/assignment techniques are analyzed and compared in each category. Lastly, possible future research directions are discussed.
Blockchain technology has rapidly emerged to mainstream attention, while its publicly accessible, heterogeneous, massive-volume, and temporal data are reminiscent of the complex dynamics encountered during the last decade of big data. Unlike any prior data source, blockchain datasets encompass multiple layers of interactions across real-world entities, e.g., human users, autonomous programs, and smart contracts. Furthermore, blockchain's integration with cryptocurrencies has introduced financial aspects of unprecedented scale and complexity such as decentralized finance, stablecoins, non-fungible tokens, and central bank digital currencies. These unique characteristics present both opportunities and challenges for machine learning on blockchain data. On one hand, we examine the state-of-the-art solutions, applications, and future directions associated with leveraging machine learning for blockchain data analysis critical for the improvement of blockchain technology such as e-crime detection and trends prediction. On the other hand, we shed light on the pivotal role of blockchain by providing vast datasets and tools that can catalyze the growth of the evolving machine learning ecosystem. This paper serves as a comprehensive resource for researchers, practitioners, and policymakers, offering a roadmap for navigating this dynamic and transformative field.
The introduction of generative artificial intelligence (GenAI) into educational practices has been transformative, yet it brings a crucial concern about the potential distortion of users' beliefs. Given the prevalence of GenAI among college students, examining the psychological mechanisms that lead to GenAI distortion from both technological factors and the individual's psychological processes is a critical priority. A mixed-methods approach is employed to test the proposed hypotheses. Study 1 (N = 10) revealed through qualitative analysis that GenAI's fluent outputs significantly engaged college students, eliciting positive emotional responses during an interaction. GenAI's tendency to conflate fact with fiction often led to presentations of unrealistic and exaggerated information, potentially distorting users' perceptions of reality-a phenomenon termed GenAI distortion. Following these insights, Study 2 (cross-sectional survey, N = 999) and Study 3 (experimental manipulation, N = 175) explored how GenAI fluency affects college students' GenAI distortion and examined the mediating effect of positive affect. The results indicated that GenAI fluency predicts GenAI distortion via the mediating role of positive affect. Our findings provide theoretical foundations and practical implications for understanding GenAI distortion among college students.
Current recommendation systems are significantly affected by a serious issue of temporal data shift, which is the inconsistency between the distribution of historical data and that of online data. Most existing models focus on utilizing updated data, overlooking the transferable, temporal data shift-free information that can be learned from shifting data. We propose the Temporal Invariance of Association theorem, which suggests that given a fixed search space, the relationship between the data and the data in the search space keeps invariant over time. Leveraging this principle, we designed a retrieval-based recommendation system framework that can train a data shift-free relevance network using shifting data, significantly enhancing the predictive performance of the original model in the recommendation system. However, retrieval-based recommendation models face substantial inference time costs when deployed online. To address this, we further designed a distill framework that can distill information from the relevance network into a parameterized module using shifting data. The distilled model can be deployed online alongside the original model, with only a minimal increase in inference time. Extensive experiments on multiple real datasets demonstrate that our framework significantly improves the performance of the original model by utilizing shifting data.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Hierarchical structures are popular in recent vision transformers, however, they require sophisticated designs and massive datasets to work well. In this paper, we explore the idea of nesting basic local transformers on non-overlapping image blocks and aggregating them in a hierarchical way. We find that the block aggregation function plays a critical role in enabling cross-block non-local information communication. This observation leads us to design a simplified architecture that requires minor code changes upon the original vision transformer. The benefits of the proposed judiciously-selected design are threefold: (1) NesT converges faster and requires much less training data to achieve good generalization on both ImageNet and small datasets like CIFAR; (2) when extending our key ideas to image generation, NesT leads to a strong decoder that is 8$\times$ faster than previous transformer-based generators; and (3) we show that decoupling the feature learning and abstraction processes via this nested hierarchy in our design enables constructing a novel method (named GradCAT) for visually interpreting the learned model. Source code is available //github.com/google-research/nested-transformer.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.