亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the upcoming 6G era, existing terrestrial networks have evolved toward space-air-ground integrated networks (SAGIN), providing ultra-high data rates, seamless network coverage, and ubiquitous intelligence for communications of applications and services. However, conventional communications in SAGIN still face data confidentiality issues. Fortunately, the concept of Quantum Key Distribution (QKD) over SAGIN is able to provide information-theoretic security for secure communications in SAGIN with quantum cryptography. Therefore, in this paper, we propose the quantum-secured SAGIN which is feasible to achieve proven secure communications using quantum mechanics to protect data channels between space, air, and ground nodes. Moreover, we propose a universal QKD service provisioning framework to minimize the cost of QKD services under the uncertainty and dynamics of communications in quantum-secured SAGIN. In this framework, fiber-based QKD services are deployed in passive optical networks with the advantages of low loss and high stability. Moreover, the widely covered and flexible satellite- and UAV-based QKD services are provisioned as a supplement during the real-time data transmission phase. Finally, to examine the effectiveness of the proposed concept and framework, a case study of quantum-secured SAGIN in the Metaverse is conducted where uncertain and dynamic factors of the secure communications in Metaverse applications are effectively resolved in the proposed framework.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Negative numbers are essential in mathematics. They are not needed to describe statistical experiments, as those are expressed in terms of positive probabilities. Shannon information was firstly defined for characterizing informational uncertainty of classical probabilistic distributions. However, it is unknown why there is negative information for more than two random variables on finite sample spaces. We first show the negative Shannon mutual information of three random variables implies Bayesian network representations of its joint distribution. We then show the intrinsic compatibility with negative Shannon information is generic for Bayesian networks with quantum realizations. This further suggests a new kind of space-dependent nonlocality. The present result provides a device-independent witness of negative Shannon information.

Adversarial examples, which are usually generated for specific inputs with a specific model, are ubiquitous for neural networks. In this paper we unveil a surprising property of adversarial noises when they are put together, i.e., adversarial noises crafted by one-step gradient methods are linearly separable if equipped with the corresponding labels. We theoretically prove this property for a two-layer network with randomly initialized entries and the neural tangent kernel setup where the parameters are not far from initialization. The proof idea is to show the label information can be efficiently backpropagated to the input while keeping the linear separability. Our theory and experimental evidence further show that the linear classifier trained with the adversarial noises of the training data can well classify the adversarial noises of the test data, indicating that adversarial noises actually inject a distributional perturbation to the original data distribution. Furthermore, we empirically demonstrate that the adversarial noises may become less linearly separable when the above conditions are compromised while they are still much easier to classify than original features.

Ever since its inception, cryptography has been caught in a vicious circle: Cryptographers keep inventing methods to hide information, and cryptanalysts break them, prompting cryptographers to invent even more sophisticated encryption schemes, and so on. But could it be that quantum information technology breaks this circle? At first sight, it looks as if it just lifts the competition between cryptographers and cryptanalysts to the next level. Indeed, quantum computers will render most of today's public key cryptosystems insecure. Nonetheless, there are good reasons to believe that cryptographers will ultimately prevail over cryptanalysts. Quantum cryptography allows us to build communication schemes whose secrecy relies only on the laws of physics as well as some minimum assumptions about the cryptographic hardware - leaving basically no room for an attack. While we are not yet there, this article provides an overview of the principles and state of the art of quantum cryptography.

Quantum random sampling is the leading proposal for demonstrating a computational advantage of quantum computers over classical computers. Recently, first large-scale implementations of quantum random sampling have arguably surpassed the boundary of what can be simulated on existing classical hardware. In this article, we comprehensively review the theoretical underpinning of quantum random sampling in terms of computational complexity and verifiability, as well as the practical aspects of its experimental implementation using superconducting and photonic devices and its classical simulation. We discuss in detail open questions in the field and provide perspectives for the road ahead, including potential applications of quantum random sampling.

Industrial Internet-of-Things (IIoT) is a powerful IoT application which remodels the growth of industries by ensuring transparent communication among various entities such as hubs, manufacturing places and packaging units. Introducing data science techniques within the IIoT improves the ability to analyze the collected data in a more efficient manner, which current IIoT architectures lack due to their distributed nature. From a security perspective, network anomalies/attackers pose high security risk in IIoT. In this paper, we have addressed this problem, where a coordinator IoT device is elected to compute the trust of IoT devices to prevent the malicious devices to be part of network. Further, the transparency of the data is ensured by integrating a blockchain-based data model. The performance of the proposed framework is validated extensively and rigorously via MATLAB against various security metrics such as attack strength, message alteration, and probability of false authentication. The simulation results suggest that the proposed solution increases IIoT network security by efficiently detecting malicious attacks in the network.

Unmanned aerial vehicle (UAV)-enabled integrated sensing and communication (ISAC) has attracted growing research interests towards sixth-generation (6G) wireless networks, in which UAVs are exploited as aerial wireless platforms to provide better coverage and enhanced sensing and communication (S\&C) services. However, due to the UAVs' size, weight, and power (SWAP) constraints, controllable mobility, and strong line-of-sight (LoS) air-ground channels, the UAV-enabled ISAC introduces both new opportunities and challenges. This article provides an overview on UAV-enabled ISAC, by presenting various solutions for optimizing the S\&C performance. In particular, we first present the UAV-enabled joint sensing and communication, and discuss the UAV maneuver control, wireless resource allocation, and interference management in the cases with single and multiple UAVs. Then, we present two application scenarios to exploit the mutual assistance between S\&C, namely sensing-assisted UAV communication and communication-assisted UAV sensing. Finally, we highlight several interesting research directions to motivate future work.

Modern approaches to supervised learning like deep neural networks (DNNs) typically implicitly assume that observed responses are statistically independent. In contrast, correlated data are prevalent in real-life large-scale applications, with typical sources of correlation including spatial, temporal and clustering structures. These correlations are either ignored by DNNs, or ad-hoc solutions are developed for specific use cases. We propose to use the mixed models framework to handle correlated data in DNNs. By treating the effects underlying the correlation structure as random effects, mixed models are able to avoid overfitted parameter estimates and ultimately yield better predictive performance. The key to combining mixed models and DNNs is using the Gaussian negative log-likelihood (NLL) as a natural loss function that is minimized with DNN machinery including stochastic gradient descent (SGD). Since NLL does not decompose like standard DNN loss functions, the use of SGD with NLL presents some theoretical and implementation challenges, which we address. Our approach which we call LMMNN is demonstrated to improve performance over natural competitors in various correlation scenarios on diverse simulated and real datasets. Our focus is on a regression setting and tabular datasets, but we also show some results for classification. Our code is available at //github.com/gsimchoni/lmmnn.

Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司