We consider optimal experimental design (OED) for nonlinear inverse problems within the Bayesian framework. Optimizing the data acquisition process for large-scale nonlinear Bayesian inverse problems is a computationally challenging task since the posterior is typically intractable and commonly-encountered optimality criteria depend on the observed data. Since these challenges are not present in OED for linear Bayesian inverse problems, we propose an approach based on first linearizing the associated forward problem and then optimizing the experimental design. Replacing an accurate but costly model with some linear surrogate, while justified for certain problems, can lead to incorrect posteriors and sub-optimal designs if model discrepancy is ignored. To avoid this, we use the Bayesian approximation error (BAE) approach to formulate an A-optimal design objective for sensor selection that is aware of the model error. In line with recent developments, we prove that this uncertainty-aware objective is independent of the exact choice of linearization. This key observation facilitates the formulation of an uncertainty-aware OED objective function using a completely trivial linear map, the zero map, as a surrogate to the forward dynamics. The base methodology is also extended to marginalized OED problems, accommodating uncertainties arising from both linear approximations and unknown auxiliary parameters. Our approach only requires parameter and data sample pairs, hence it is particularly well-suited for black box forward models. We demonstrate the effectiveness of our method for finding optimal designs in an idealized subsurface flow inverse problem and for tsunami detection.
We determine the best n-term approximation of generalized Wiener model classes in a Hilbert space $H $. This theory is then applied to several special cases.
We present a semi-amortized variational inference framework designed for computationally feasible uncertainty quantification in 2D full-waveform inversion to explore the multimodal posterior distribution without dimensionality reduction. The framework is called WISER, short for full-Waveform variational Inference via Subsurface Extensions with Refinements. WISER leverages the power of generative artificial intelligence to perform approximate amortized inference that is low-cost albeit showing an amortization gap. This gap is closed through non-amortized refinements that make frugal use of acoustic wave physics. Case studies illustrate that WISER is capable of full-resolution, computationally feasible, and reliable uncertainty estimates of velocity models and imaged reflectivities.
In recent years, the number of new applications for highly complex AI systems has risen significantly. Algorithmic decision-making systems (ADMs) are one of such applications, where an AI system replaces the decision-making process of a human expert. As one approach to ensure fairness and transparency of such systems, explainable AI (XAI) has become more important. One variant to achieve explainability are surrogate models, i.e., the idea to train a new simpler machine learning model based on the input-output-relationship of a black box model. The simpler machine learning model could, for example, be a decision tree, which is thought to be intuitively understandable by humans. However, there is not much insight into how well the surrogate model approximates the black box. Our main assumption is that a good surrogate model approach should be able to bring such a discriminating behavior to the attention of humans; prior to our research we assumed that a surrogate decision tree would identify such a pattern on one of its first levels. However, in this article we show that even if the discriminated subgroup - while otherwise being the same in all categories - does not get a single positive decision from the black box ADM system, the corresponding question of group membership can be pushed down onto a level as low as wanted by the operator of the system. We then generalize this finding to pinpoint the exact level of the tree on which the discriminating question is asked and show that in a more realistic scenario, where discrimination only occurs to some fraction of the disadvantaged group, it is even more feasible to hide such discrimination. Our approach can be generalized easily to other surrogate models.
Structural identifiability is an important property of parametric ODE models. When conducting an experiment and inferring the parameter value from the time-series data, we want to know if the value is globally, locally, or non-identifiable. Global identifiability of the parameter indicates that there exists only one possible solution to the inference problem, local identifiability suggests that there could be several (but finitely many) possibilities, while non-identifiability implies that there are infinitely many possibilities for the value. Having this information is useful since, one would, for example, only perform inferences for the parameters which are identifiable. Given the current significance and widespread research conducted in this area, we decided to create a database of linear compartment models and their identifiability results. This facilitates the process of checking theorems and conjectures and drawing conclusions on identifiability. By only storing models up to symmetries and isomorphisms, we optimize memory efficiency and reduce query time. We conclude by applying our database to real problems. We tested a conjecture about deleting one leak of the model states in the paper 'Linear compartmental models: Input-output equations and operations that preserve identifiability' by E. Gross et al., and managed to produce a counterexample. We also compute some interesting statistics related to the identifiability of linear compartment model parameters.
This work concerns the analysis of the discontinuous Galerkin spectral element method (DGSEM) with implicit time stepping for the numerical approximation of nonlinear scalar conservation laws in multiple space dimensions. We consider either the DGSEM with a backward Euler time stepping, or a space-time DGSEM discretization to remove the restriction on the time step. We design graph viscosities in space, and in time for the space-time DGSEM, to make the schemes maximum principle preserving and entropy stable for every admissible convex entropy. We also establish well-posedness of the discrete problems by showing existence and uniqueness of the solutions to the nonlinear implicit algebraic relations that need to be solved at each time step. Numerical experiments in one space dimension are presented to illustrate the properties of these schemes.
We derive the Alternating-Direction Implicit (ADI) method based on a commuting operator split and apply the results to the continuous time algebraic Lyapunov equation with low-rank constant term and approximate solution. Previously, it has been mandatory to start the low-rank ADI (LR-ADI) with an all-zero initial value. Our approach retains the known efficient iteration schemes of low-rank increments and residual to arbitrary low-rank initial values for the LR-ADI method. We further generalize some of the known properties of the LR-ADI for Lyapunov equations to larger classes of algorithms or problems. We investigate the performance of arbitrary initial values using two outer iterations in which LR-ADI is typically called. First, we solve an algebraic Riccati equation with the Newton method. Second, we solve a differential Riccati equation with a first-order Rosenbrock method. Numerical experiments confirm that the proposed new initial value of the alternating-directions implicit (ADI) can lead to a significant reduction in the total number of ADI steps, while also showing a 17% and 8x speed-up over the zero initial value for the two equation types, respectively.
We propose a framework to perform Bayesian inference using conditional score-based diffusion models to solve a class of inverse problems in mechanics involving the inference of a specimen's spatially varying material properties from noisy measurements of its mechanical response to loading. Conditional score-based diffusion models are generative models that learn to approximate the score function of a conditional distribution using samples from the joint distribution. More specifically, the score functions corresponding to multiple realizations of the measurement are approximated using a single neural network, the so-called score network, which is subsequently used to sample the posterior distribution using an appropriate Markov chain Monte Carlo scheme based on Langevin dynamics. Training the score network only requires simulating the forward model. Hence, the proposed approach can accommodate black-box forward models and complex measurement noise. Moreover, once the score network has been trained, it can be re-used to solve the inverse problem for different realizations of the measurements. We demonstrate the efficacy of the proposed approach on a suite of high-dimensional inverse problems in mechanics that involve inferring heterogeneous material properties from noisy measurements. Some examples we consider involve synthetic data, while others include data collected from actual elastography experiments. Further, our applications demonstrate that the proposed approach can handle different measurement modalities, complex patterns in the inferred quantities, non-Gaussian and non-additive noise models, and nonlinear black-box forward models. The results show that the proposed framework can solve large-scale physics-based inverse problems efficiently.
Assessing the capabilities of large multimodal models (LMMs) often requires the creation of ad-hoc evaluations. Currently, building new benchmarks requires tremendous amounts of manual work for each specific analysis. This makes the evaluation process tedious and costly. In this paper, we present APEx, Automatic Programming of Experiments, the first framework for automatic benchmarking of LMMs. Given a research question expressed in natural language, APEx leverages a large language model (LLM) and a library of pre-specified tools to generate a set of experiments for the model at hand, and progressively compile a scientific report. The report drives the testing procedure: based on the current status of the investigation, APEx chooses which experiments to perform and whether the results are sufficient to draw conclusions. Finally, the LLM refines the report, presenting the results to the user in natural language. Thanks to its modularity, our framework is flexible and extensible as new tools become available. Empirically, APEx reproduces the findings of existing studies while allowing for arbitrary analyses and hypothesis testing.
We studied the dynamical properties of Rabi oscillations driven by an alternating Rashba field applied to a two-dimensional (2D) harmonic confinement system. We solve the time-dependent (TD) Schr\"{o}dinger equation numerically and rewrite the resulting TD wavefunction onto the Bloch sphere (BS) using two BS parameters of the zenith ($\theta_B$) and azimuthal ($\phi_B$) angles, extracting the phase information $\phi_B$ as well as the mixing ratio $\theta_B$ between the two BS-pole states. We employed a two-state rotating wave (TSRW) approach and studied the fundamental features of $\theta_B$ and $\phi_B$ over time. The TSRW approach reveals a triangular wave formation in $\theta_B$. Moreover, at each apex of the triangular wave, the TD wavefunction passes through the BS pole, and the state is completely replaced by the opposite spin state. The TSRW approach also elucidates a linear change in $\phi_B$. The slope of $\phi_B$ vs. time is equal to the difference between the dynamical terms, leading to a confinement potential in the harmonic system. The TSRW approach further demonstrates a jump in the phase difference by $\pi$ when the wavefunction passes through the BS pole. The alternating Rashba field causes multiple successive Rabi transitions in the 2D harmonic system. We then introduce the effective BS (EBS) and transform these complicated transitions into an equivalent "single" Rabi one. Consequently, the EBS parameters $\theta_B^{\mathrm{eff}}$ and $\phi_B^{\mathrm{eff}}$ exhibit mixing and phase difference between two spin states $\alpha$ and $\beta$, leading to a deep understanding of the TD features of multi-Rabi oscillations. Furthermore, the combination of the BS representation with the TSRW approach successfully reveals the dynamical properties of the Rabi oscillation, even beyond the TSRW approximation.
The complexity of BIM software presents significant barriers to the widespread adoption of BIM and model-based design within the Architecture, Engineering, and Construction (AEC) sector. End-users frequently express concerns regarding the additional effort required to create a sufficiently detailed BIM model when compared with conventional 2D drafting. This study explores the potential of sequential recommendation systems to accelerate the BIM modeling process. By treating BIM software commands as recommendable items, we introduce a novel end-to-end approach that predicts the next-best command based on user historical interactions. Our framework extensively preprocesses real-world, large-scale BIM log data, utilizes the transformer architectures from the latest large language models as the backbone network, and ultimately results in a prototype that provides real-time command suggestions within the BIM authoring tool Vectorworks. Subsequent experiments validated that our proposed model outperforms the previous study, demonstrating the immense potential of the recommendation system in enhancing design efficiency.