亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Estimating parameters of a diffusion process given continuous-time observations of the process via maximum likelihood approaches or, online, via stochastic gradient descent or Kalman filter formulations constitutes a well-established research area. It has also been established previously that these techniques are, in general, not robust to perturbations in the data in the form of temporal correlations. While the subject is relatively well understood and appropriate modifications have been suggested in the context of multi-scale diffusion processes and their reduced model equations, we consider here an alternative setting where a second-order diffusion process in positions and velocities is only observed via its positions. In this note, we propose a simple modification to standard stochastic gradient descent and Kalman filter formulations, which eliminates the arising systematic estimation biases. The modification can be extended to standard maximum likelihood approaches and avoids computation of previously proposed correction terms.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

By means of numerical analysis conducted with the aid of the computer, the collective synchronization of coupled phase oscillators in the Kuramoto model in the connected regime of random networks of various sizes is studied. The oscillators synchronize and achieve phase coherence, and this process is not significantly affected by the level of connectivity of the network. If the probability that two oscillators are coupled is around the network connectivity threshold synchronization still occurs, although in a more attenuated way. If the size of the network is sufficiently large the oscillators have a phase transition.

When applying multivariate extreme values statistics to analyze tail risk in compound events defined by a multivariate random vector, one often assumes that all dimensions share the same extreme value index. While such an assumption can be tested using a Wald-type test, the performance of such a test deteriorates as the dimensionality increases. This paper introduces a novel test for testing extreme value indices in a high dimensional setting. We show the asymptotic behavior of the test statistic and conduct simulation studies to evaluate its finite sample performance. The proposed test significantly outperforms existing methods in high dimensional settings. We apply this test to examine two datasets previously assumed to have identical extreme value indices across all dimensions.

We provide a systematic approach to stable central limit theorems for d-dimensional martingale difference arrays and martingale difference sequences. The conditions imposed are straightforward extensions of the univariate case.

We study the construction and convergence of decoupling multistep schemes of higher order using the backward differentiation formulae for an elliptic-parabolic problem, which includes multiple-network poroelasticity as a special case. These schemes were first introduced in [Altmann, Maier, Unger, BIT Numer. Math., 64:20, 2024], where a convergence proof for the second-order case is presented. Here, we present a slightly modified version of these schemes using a different construction of related time delay systems. We present a novel convergence proof relying on concepts from G-stability applicable for any order and providing a sharper characterization of the required weak coupling condition. The key tool for the convergence analysis is the construction of a weighted norm enabling a telescoping argument for the sum of the errors.

This study proposes a unified theory and statistical learning approach for traffic conflict detection, addressing the long-existing call for a consistent and comprehensive methodology to evaluate the collision risk emerging in road user interactions. The proposed theory assumes context-dependent probabilistic collision risk and frames conflict detection as assessing this risk by statistical learning of extreme events in daily interactions. Experiments using real-world trajectory data are conducted in this study, where a unified metric of conflict is trained with lane-changing interactions on German highways and applied to near-crash events from the 100-Car Naturalistic Driving Study in the U.S. Results of the experiments demonstrate that the trained metric provides effective collision warnings, generalises across distinct datasets and traffic environments, covers a broad range of conflicts, and delivers a long-tailed distribution of conflict intensity. Reflecting on these results, the unified theory ensures consistent evaluation by a generic formulation that encompasses varying assumptions of traffic conflicts; the statistical learning approach then enables a comprehensive consideration of influencing factors such as motion states of road users, environment conditions, and participant characteristics. Therefore, the theory and learning approach jointly provide an explainable and adaptable methodology for conflict detection among different road users and across various interaction scenarios. This promises to reduce accidents and improve overall traffic safety, by enhanced safety assessment of traffic infrastructures, more effective collision warning systems for autonomous driving, and a deeper understanding of road user behaviour in different traffic conditions.

We address the challenge of estimating the hyperuniformity exponent $\alpha$ of a spatial point process, given only one realization of it. Assuming that the structure factor $S$ of the point process follows a vanishing power law at the origin (the typical case of a hyperuniform point process), this exponent is defined as the slope near the origin of $\log S$. Our estimator is built upon the (expanding window) asymptotic variance of some wavelet transforms of the point process. By combining several scales and several wavelets, we develop a multi-scale, multi-taper estimator $\widehat{\alpha}$. We analyze its asymptotic behavior, proving its consistency under various settings, and enabling the construction of asymptotic confidence intervals for $\alpha$ when $\alpha < d$ and under Brillinger mixing. This construction is derived from a multivariate central limit theorem where the normalisations are non-standard and vary among the components. We also present a non-asymptotic deviation inequality providing insights into the influence of tapers on the bias-variance trade-off of $\widehat{\alpha}$. Finally, we investigate the performance of $\widehat{\alpha}$ through simulations, and we apply our method to the analysis of hyperuniformity in a real dataset of marine algae.

This paper considers a joint survival and mixed-effects model to explain the survival time from longitudinal data and high-dimensional covariates. The longitudinal data is modeled using a nonlinear effects model, where the regression function serves as a link function incorporated into a Cox model as a covariate. In that way, the longitudinal data is related to the survival time at a given time. Additionally, the Cox model takes into account the inclusion of high-dimensional covariates. The main objectives of this research are two-fold: first, to identify the relevant covariates that contribute to explaining survival time, and second, to estimate all unknown parameters of the joint model. For that purpose, we consider the maximization of a Lasso penalized likelihood. To tackle the optimization problem, we implement a pre-conditioned stochastic gradient to handle the latent variables of the nonlinear mixed-effects model associated with a proximal operator to manage the non-differentiability of the penalty. We provide relevant simulations that showcase the performance of the proposed variable selection and parameters' estimation method in the joint modeling of a Cox and logistic model.

We introduce a theoretical and practical framework for efficient importance sampling of mini-batch samples for gradient estimation from single and multiple probability distributions. To handle noisy gradients, our framework dynamically evolves the importance distribution during training by utilizing a self-adaptive metric. Our framework combines multiple, diverse sampling distributions, each tailored to specific parameter gradients. This approach facilitates the importance sampling of vector-valued gradient estimation. Rather than naively combining multiple distributions, our framework involves optimally weighting data contribution across multiple distributions. This adapted combination of multiple importance yields superior gradient estimates, leading to faster training convergence. We demonstrate the effectiveness of our approach through empirical evaluations across a range of optimization tasks like classification and regression on both image and point cloud datasets.

In toxicology, the validation of the concurrent control by historical control data (HCD) has become requirements. This validation is usually done by historical control limits (HCL) which in practice are often graphically displayed in a Sheward control chart like manner. In many applications, HCL are applied to dichotomous data, e.g. the number of rats with a tumor vs. the number of rats without a tumor (carcinogenicity studies) or the number of cells with a micronucleus out of a total number of cells. Dichotomous HCD may be overdispersed and can be heavily right- (or left-) skewed, which is usually not taken into account in the practical applications of HCL. To overcome this problem, four different prediction intervals (two frequentist, two Bayesian), that can be applied to such data, are proposed. Comprehensive Monte-Carlo simulations assessing the coverage probabilities of seven different methods for HCL calculation reveal, that frequentist bootstrap calibrated prediction intervals control the type-1-error best. Heuristics traditionally used in control charts (e.g. the limits in Sheward np-charts or the mean plus minus 2 SD) as well a the historical range fail to control a pre-specified coverage probability. The application of HCL is demonstrated based on a real life data set containing historical controls from long-term carcinogenicity studies run on behalf of the U.S. National Toxicology Program. The proposed frequentist prediction intervals are publicly available from the R package predint, whereas R code for the computation of the Bayesian prediction intervals is provided via GitHub.

Current approaches to identifying driving heterogeneity face challenges in comprehending fundamental patterns from the perspective of underlying driving behavior mechanisms. The concept of Action phases was proposed in our previous work, capturing the diversity of driving characteristics with physical meanings. This study presents a novel framework to further interpret driving patterns by classifying Action phases in an unsupervised manner. In this framework, a Resampling and Downsampling Method (RDM) is first applied to standardize the length of Action phases. Then the clustering calibration procedure including ''Feature Selection'', ''Clustering Analysis'', ''Difference/Similarity Evaluation'', and ''Action phases Re-extraction'' is iteratively applied until all differences among clusters and similarities within clusters reach the pre-determined criteria. Application of the framework using real-world datasets revealed six driving patterns in the I80 dataset, labeled as ''Catch up'', ''Keep away'', and ''Maintain distance'', with both ''Stable'' and ''Unstable'' states. Notably, Unstable patterns are more numerous than Stable ones. ''Maintain distance'' is the most common among Stable patterns. These observations align with the dynamic nature of driving. Two patterns ''Stable keep away'' and ''Unstable catch up'' are missing in the US101 dataset, which is in line with our expectations as this dataset was previously shown to have less heterogeneity. This demonstrates the potential of driving patterns in describing driving heterogeneity. The proposed framework promises advantages in addressing label scarcity in supervised learning and enhancing tasks such as driving behavior modeling and driving trajectory prediction.

北京阿比特科技有限公司