亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Experimental materials science is experiencing significant growth due to automated experimentation and AI techniques. Integrated autonomous platforms are emerging, combining generative models, robotics, simulations, and automated systems for material synthesis. However, two major challenges remain: democratizing access to these technologies and creating accessible infrastructure for under-resourced scientists. This paper introduces the Quantum Data Hub (QDH), a community-accessible research infrastructure aimed at researchers working with quantum materials. QDH integrates with the National Data Platform, adhering to FAIR principles while proposing additional UNIT principles for usability, navigability, interpretability, and timeliness. The QDH facilitates collaboration and extensibility, allowing seamless integration of new researchers, instruments, and data into the system.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志(zhi)。 Publisher:Elsevier。 SIT:

Maximum-a-posteriori (MAP) decoding is the most widely used decoding strategy for neural machine translation (NMT) models. The underlying assumption is that model probability correlates well with human judgment, with better translations getting assigned a higher score by the model. However, research has shown that this assumption does not always hold, and generation quality can be improved by decoding to optimize a utility function backed by a metric or quality-estimation signal, as is done by Minimum Bayes Risk (MBR) or quality-aware decoding. The main disadvantage of these approaches is that they require an additional model to calculate the utility function during decoding, significantly increasing the computational cost. In this paper, we propose to make the NMT models themselves quality-aware by training them to estimate the quality of their own output. Using this approach for MBR decoding we can drastically reduce the size of the candidate list, resulting in a speed-up of two-orders of magnitude. When applying our method to MAP decoding we obtain quality gains similar or even superior to quality reranking approaches, but with the efficiency of single pass decoding.

A classic task in robotics is tracking a target in the external environment. There are several well-documented approaches to this problem. This paper presents a novel approach to this problem using infrared time of flight sensors. The use of infrared time of flight sensors is not common as a tracking approach, typically used for simple motion detectors. However, with the approach highlighted in this paper they can be used to accurately track the position of a moving subject. Traditional approaches to the tracking problem often include cameras, or ultrasonic sensors. These approaches can be expensive and overcompensating in some use cases. The method focused on in this paper can be superior in terms of cost and simplicity.

This paper provides an NP procedure that decides whether a linear-exponential system of constraints has an integer solution. Linear-exponential systems extend standard integer linear programs with exponential terms $2^x$ and remainder terms ${(x \bmod 2^y)}$. Our result implies that the existential theory of the structure $(\mathbb{N},0,1,+,2^{(\cdot)},V_2(\cdot,\cdot),\leq)$ has an NP-complete satisfiability problem, thus improving upon a recent EXPSPACE upper bound. This theory extends the existential fragment of Presburger arithmetic with the exponentiation function $x \mapsto 2^x$ and the binary predicate $V_2(x,y)$ that is true whenever $y \geq 1$ is the largest power of $2$ dividing $x$. Our procedure for solving linear-exponential systems uses the method of quantifier elimination. As a by-product, we modify the classical Gaussian variable elimination into a non-deterministic polynomial-time procedure for integer linear programming (or: existential Presburger arithmetic).

Political scientists are increasingly attuned to the promises and pitfalls of establishing causal effects. But the vital question for many is not if a causal effect exists but why and how it exists. Even so, many researchers avoid causal mediation analyses due to the assumptions required, instead opting to explore causal mechanisms through what we call intermediate outcome tests. These tests use the same research design used to estimate the effect of treatment on the outcome to estimate the effect of the treatment on one or more mediators, with authors often concluding that evidence of the latter is evidence of a causal mechanism. We show in this paper that, without further assumptions, this can neither establish nor rule out the existence of a causal mechanism. Instead, such conclusions about the indirect effect of treatment rely on implicit and usually very strong assumptions that are often unmet. Thus, such causal mechanism tests, though very common in political science, should not be viewed as a free lunch but rather should be used judiciously, and researchers should explicitly state and defend the requisite assumptions.

In-situ sensing, in conjunction with learning models, presents a unique opportunity to address persistent defect issues in Additive Manufacturing (AM) processes. However, this integration introduces significant data privacy concerns, such as data leakage, sensor data compromise, and model inversion attacks, revealing critical details about part design, material composition, and machine parameters. Differential Privacy (DP) models, which inject noise into data under mathematical guarantees, offer a nuanced balance between data utility and privacy by obscuring traces of sensing data. However, the introduction of noise into learning models, often functioning as black boxes, complicates the prediction of how specific noise levels impact model accuracy. This study introduces the Differential Privacy-HyperDimensional computing (DP-HD) framework, leveraging the explainability of the vector symbolic paradigm to predict the noise impact on the accuracy of in-situ monitoring, safeguarding sensitive data while maintaining operational efficiency. Experimental results on real-world high-speed melt pool data of AM for detecting overhang anomalies demonstrate that DP-HD achieves superior operational efficiency, prediction accuracy, and robust privacy protection, outperforming state-of-the-art Machine Learning (ML) models. For example, when implementing the same level of privacy protection (with a privacy budget set at 1), our model achieved an accuracy of 94.43\%, surpassing the performance of traditional models such as ResNet50 (52.30\%), GoogLeNet (23.85\%), AlexNet (55.78\%), DenseNet201 (69.13\%), and EfficientNet B2 (40.81\%). Notably, DP-HD maintains high performance under substantial noise additions designed to enhance privacy, unlike current models that suffer significant accuracy declines under high privacy constraints.

This research explores how the information of prompts interacts with the high-performing speech recognition model, Whisper. We compare its performances when prompted by prompts with correct information and those corrupted with incorrect information. Our results unexpectedly show that Whisper may not understand the textual prompts in a human-expected way. Additionally, we find that performance improvement is not guaranteed even with stronger adherence to the topic information in textual prompts. It is also noted that English prompts generally outperform Mandarin ones on datasets of both languages, likely due to differences in training data distributions for these languages despite the mismatch with pre-training scenarios. Conversely, we discover that Whisper exhibits awareness of misleading information in language tokens by ignoring incorrect language tokens and focusing on the correct ones. In sum, We raise insightful questions about Whisper's prompt understanding and reveal its counter-intuitive behaviors. We encourage further studies.

When attempting to understand the behavior of an executable, a binary analyst can make use of many different techniques. These include program slicing, dynamic instrumentation, binary-level rewriting, symbolic execution, and formal verification, all of which can uncover insights into how a piece of machine code behaves. As a result, there is no one-size-fits-all binary analysis tool, so a binary analysis researcher will often combine several different tools. Sometimes, a researcher will even need to design new tools to study problems that existing frameworks are not well equipped to handle. Designing such tools from complete scratch is rarely time- or cost-effective, however, given the scale and complexity of modern instruction set architectures. We present Macaw, a modular framework that makes it possible to rapidly build reliable binary analysis tools across a range of use cases. Over a decade of development, we have used Macaw to support an industrial research team in building tools for machine code-related tasks. As such, the name "Macaw" refers not just to the framework itself, but also a suite of tools that are built on top of the framework. We describe Macaw in depth and describe the different static and dynamic analyses that it performs, many of which are powered by an SMT-based symbolic execution engine. We put a particular focus on interoperability between machine code and higher-level languages, including binary lifting from x86 to LLVM, as well verifying the correctness of mixed C and assembly code.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

北京阿比特科技有限公司