亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study multimodal coreference resolution, specifically where a longer descriptive text, i.e., a narration is paired with an image. This poses significant challenges due to fine-grained image-text alignment, inherent ambiguity present in narrative language, and unavailability of large annotated training sets. To tackle these challenges, we present a data efficient semi-supervised approach that utilizes image-narration pairs to resolve coreferences and narrative grounding in a multimodal context. Our approach incorporates losses for both labeled and unlabeled data within a cross-modal framework. Our evaluation shows that the proposed approach outperforms strong baselines both quantitatively and qualitatively, for the tasks of coreference resolution and narrative grounding.

相關內容

We present a novel clustering algorithm, visClust, that is based on lower dimensional data representations and visual interpretation. Thereto, we design a transformation that allows the data to be represented by a binary integer array enabling the use of image processing methods to select a partition. Qualitative and quantitative analyses measured in accuracy and an adjusted Rand-Index show that the algorithm performs well while requiring low runtime and RAM. We compare the results to 6 state-of-the-art algorithms with available code, confirming the quality of visClust by superior performance in most experiments. Moreover, the algorithm asks for just one obligatory input parameter while allowing optimization via optional parameters. The code is made available on GitHub and straightforward to use.

In this paper, we study the method to reconstruct dynamical systems from data without time labels. Data without time labels appear in many applications, such as molecular dynamics, single-cell RNA sequencing etc. Reconstruction of dynamical system from time sequence data has been studied extensively. However, these methods do not apply if time labels are unknown. Without time labels, sequence data becomes distribution data. Based on this observation, we propose to treat the data as samples from a probability distribution and try to reconstruct the underlying dynamical system by minimizing the distribution loss, sliced Wasserstein distance more specifically. Extensive experiment results demonstrate the effectiveness of the proposed method.

In this paper, we analyze different methods to mitigate inherent geographical biases present in state of the art image classification models. We first quantitatively present this bias in two datasets - The Dollar Street Dataset and ImageNet, using images with location information. We then present different methods which can be employed to reduce this bias. Finally, we analyze the effectiveness of the different techniques on making these models more robust to geographical locations of the images.

In this paper, we propose an alternating optimization method to address a time-optimal trajectory generation problem. Different from the existing solutions, our approach introduces a new formulation that minimizes the overall trajectory running time while maintaining the polynomial smoothness constraints and incorporating hard limits on motion derivatives to ensure feasibility. To address this problem, an alternating peak-optimization method is developed, which splits the optimization process into two sub-optimizations: the first sub-optimization optimizes polynomial coefficients for smoothness, and the second sub-optimization adjusts the time allocated to each trajectory segment. These are alternated until a feasible minimum-time solution is found. We offer a comprehensive set of simulations and experiments to showcase the superior performance of our approach in comparison to existing methods. A collection of demonstration videos with real drone flying experiments can be accessed at //www.youtube.com/playlist?list=PLQGtPFK17zUYkwFT-fr0a8E49R8Uq712l .

This paper explores an iterative coupling approach to solve linear thermo-poroelasticity problems, with its application as a high-fidelity discretization utilizing finite elements during the training of projection-based reduced order models. One of the main challenges in addressing coupled multi-physics problems is the complexity and computational expenses involved. In this study, we introduce a decoupled iterative solution approach, integrated with reduced order modeling, aimed at augmenting the efficiency of the computational algorithm. The iterative coupling technique we employ builds upon the established fixed-stress splitting scheme that has been extensively investigated for Biot's poroelasticity. By leveraging solutions derived from this coupled iterative scheme, the reduced order model employs an additional Galerkin projection onto a reduced basis space formed by a small number of modes obtained through proper orthogonal decomposition. The effectiveness of the proposed algorithm is demonstrated through numerical experiments, showcasing its computational prowess.

In this work we make us of Livens principle (sometimes also referred to as Hamilton-Pontryagin principle) in order to obtain a novel structure-preserving integrator for mechanical systems. In contrast to the canonical Hamiltonian equations of motion, the Euler-Lagrange equations pertaining to Livens principle circumvent the need to invert the mass matrix. This is an essential advantage with respect to singular mass matrices, which can yield severe difficulties for the modelling and simulation of multibody systems. Moreover, Livens principle unifies both Lagrangian and Hamiltonian viewpoints on mechanics. Additionally, the present framework avoids the need to set up the system's Hamiltonian. The novel scheme algorithmically conserves a general energy function and aims at the preservation of momentum maps corresponding to symmetries of the system. We present an extension to mechanical systems subject to holonomic constraints. The performance of the newly devised method is studied in representative examples.

In this article we shall discuss the theory of geodesics in information geometry, and an application in astrophysics. We will study how gradient flows in information geometry describe geodesics, explore the related mechanics by introducing a constraint, and apply our theory to Gaussian model and black hole thermodynamics. Thus, we demonstrate how deformation of gradient flows leads to more general Randers-Finsler metrics, describe Hamiltonian mechanics that derive from a constraint, and prove duality via canonical transformation. We also verified our theories for a deformation of the Gaussian model, and described dynamical evolution of flat metrics for Kerr and Reissner-Nordstr\"om black holes.

Robust inferential methods based on divergences measures have shown an appealing trade-off between efficiency and robustness in many different statistical models. In this paper, minimum density power divergence estimators (MDPDEs) for the scale and shape parameters of the log-logistic distribution are considered. The log-logistic is a versatile distribution modeling lifetime data which is commonly adopted in survival analysis and reliability engineering studies when the hazard rate is initially increasing but then it decreases after some point. Further, it is shown that the classical estimators based on maximum likelihood (MLE) are included as a particular case of the MDPDE family. Moreover, the corresponding influence function of the MDPDE is obtained, and its boundlessness is proved, thus leading to robust estimators. A simulation study is carried out to illustrate the slight loss in efficiency of MDPDE with respect to MLE and, at besides, the considerable gain in robustness.

In the realm of machine learning, the data may contain additional attributes, known as privileged information (PI). The main purpose of PI is to assist in the training of the model and then utilize the acquired knowledge to make predictions for unseen samples. Support vector regression (SVR) is an effective regression model, however, it has a low learning speed due to solving a convex quadratic problem (QP) subject to a pair of constraints. In contrast, twin support vector regression (TSVR) is more efficient than SVR as it solves two QPs each subject to one set of constraints. However, TSVR and its variants are trained only on regular features and do not use privileged features for training. To fill this gap, we introduce a fusion of TSVR with learning using privileged information (LUPI) and propose a novel approach called twin support vector regression with privileged information (TSVR+). The regularization terms in the proposed TSVR+ capture the essence of statistical learning theory and implement the structural risk minimization principle. We use the successive overrelaxation (SOR) technique to solve the optimization problem of the proposed TSVR+, which enhances the training efficiency. As far as our knowledge extends, the integration of the LUPI concept into twin variants of regression models is a novel advancement. The numerical experiments conducted on UCI, stock and time series data collectively demonstrate the superiority of the proposed model.

This paper deals with surrogate modelling of a computer code output in a hierarchical multi-fidelity context, i.e., when the output can be evaluated at different levels of accuracy and computational cost. Using observations of the output at low- and high-fidelity levels, we propose a method that combines Gaussian process (GP) regression and Bayesian neural network (BNN), in a method called GPBNN. The low-fidelity output is treated as a single-fidelity code using classical GP regression. The high-fidelity output is approximated by a BNN that incorporates, in addition to the high-fidelity observations, well-chosen realisations of the low-fidelity output emulator. The predictive uncertainty of the final surrogate model is then quantified by a complete characterisation of the uncertainties of the different models and their interaction. GPBNN is compared with most of the multi-fidelity regression methods allowing to quantify the prediction uncertainty.

北京阿比特科技有限公司