亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study employs counterfactual explanations to explore "what if?" scenarios in medical research, with the aim of expanding our understanding beyond existing boundaries. Specifically, we focus on utilizing MRI features for diagnosing pediatric posterior fossa brain tumors as a case study. The field of artificial intelligence and explainability has witnessed a growing number of studies and increasing scholarly interest. However, the lack of human-friendly interpretations in explaining the outcomes of machine learning algorithms has significantly hindered the acceptance of these methods by clinicians in their clinical practice. To address this, our approach incorporates counterfactual explanations, providing a novel way to examine alternative decision-making scenarios. These explanations offer personalized and context-specific insights, enabling the validation of predictions and clarification of variations under diverse circumstances. Importantly, our approach maintains both statistical and clinical fidelity, allowing for the examination of distinct tumor features through alternative realities. Additionally, we explore the potential use of counterfactuals for data augmentation and evaluate their feasibility as an alternative approach in medical research. The results demonstrate the promising potential of counterfactual explanations to enhance trust and acceptance of AI-driven methods in clinical settings.

相關內容

醫學人工智能AIM(Artificial Intelligence in Medicine)雜志發表了多學科領域的原創文章,涉及醫學中的人工智能理論和實踐,以醫學為導向的人類生物學和衛生保健。醫學中的人工智能可以被描述為與研究、項目和應用相關的科學學科,旨在通過基于知識或數據密集型的計算機解決方案支持基于決策的醫療任務,最終支持和改善人類護理提供者的性能。 官網地址:

Multivariate Time Series (MVTS) anomaly detection is a long-standing and challenging research topic that has attracted tremendous research effort from both industry and academia recently. However, a careful study of the literature makes us realize that 1) the community is active but not as organized as other sibling machine learning communities such as Computer Vision (CV) and Natural Language Processing (NLP), and 2) most proposed solutions are evaluated using either inappropriate or highly flawed protocols, with an apparent lack of scientific foundation. So flawed is one very popular protocol, the so-called \pa protocol, that a random guess can be shown to systematically outperform \emph{all} algorithms developed so far. In this paper, we review and evaluate many recent algorithms using more robust protocols and discuss how a normally good protocol may have weaknesses in the context of MVTS anomaly detection and how to mitigate them. We also share our concerns about benchmark datasets, experiment design and evaluation methodology we observe in many works. Furthermore, we propose a simple, yet challenging, baseline algorithm based on Principal Components Analysis (PCA) that surprisingly outperforms many recent Deep Learning (DL) based approaches on popular benchmark datasets. The main objective of this work is to stimulate more effort towards important aspects of the research such as data, experiment design, evaluation methodology and result interpretability, instead of putting the highest weight on the design of increasingly more complex and "fancier" algorithms.

Cognitive diagnostic assessment aims to measure specific knowledge structures in students. To model data arising from such assessments, cognitive diagnostic models with discrete latent variables have gained popularity in educational and behavioral sciences. In a learning context, the latent variables often denote sequentially acquired skill attributes, which is often modeled by the so-called attribute hierarchy method. One drawback of the traditional attribute hierarchy method is that its parameter complexity varies substantially with the hierarchy's graph structure, lacking statistical parsimony. Additionally, arrows among the attributes do not carry an interpretation of statistical dependence. Motivated by these, we propose a new family of latent conjunctive Bayesian networks (LCBNs), which rigorously unify the attribute hierarchy method for sequential skill mastery and the Bayesian network model in statistical machine learning. In an LCBN, the latent graph not only retains the hard constraints on skill prerequisites as an attribute hierarchy, but also encodes nice conditional independence interpretation as a Bayesian network. LCBNs are identifiable, interpretable, and parsimonious statistical tools to diagnose students' cognitive abilities from assessment data. We propose an efficient two-step EM algorithm for structure learning and parameter estimation in LCBNs. Application of our method to an international educational assessment dataset gives interpretable findings of cognitive diagnosis.

Network calibration aims to accurately estimate the level of confidences, which is particularly important for employing deep neural networks in real-world systems. Recent approaches leverage mixup to calibrate the network's predictions during training. However, they do not consider the problem that mixtures of labels in mixup may not accurately represent the actual distribution of augmented samples. In this paper, we present RankMixup, a novel mixup-based framework alleviating the problem of the mixture of labels for network calibration. To this end, we propose to use an ordinal ranking relationship between raw and mixup-augmented samples as an alternative supervisory signal to the label mixtures for network calibration. We hypothesize that the network should estimate a higher level of confidence for the raw samples than the augmented ones (Fig.1). To implement this idea, we introduce a mixup-based ranking loss (MRL) that encourages lower confidences for augmented samples compared to raw ones, maintaining the ranking relationship. We also propose to leverage the ranking relationship among multiple mixup-augmented samples to further improve the calibration capability. Augmented samples with larger mixing coefficients are expected to have higher confidences and vice versa (Fig.1). That is, the order of confidences should be aligned with that of mixing coefficients. To this end, we introduce a novel loss, M-NDCG, in order to reduce the number of misaligned pairs of the coefficients and confidences. Extensive experimental results on standard benchmarks for network calibration demonstrate the effectiveness of RankMixup.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.

北京阿比特科技有限公司