亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shape optimization via the method of mappings. In both cases, an appropriate mesh motion technique is required. The choice is typically based on heuristics, e.g., the solution operators of partial differential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter, which shows good numerical performance for large displacements, is expensive. Moreover, from a continuous perspective, choosing the mesh motion technique is to a certain extent arbitrary and has no influence on the physically relevant quantities. Therefore, we consider approaches inspired by machine learning. We present a hybrid PDE-NN approach, where the neural network (NN) serves as parameterization of a coefficient in a second order nonlinear PDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neural network architecture. Moreover, we present an approach where a neural network corrects the harmonic extension such that the boundary displacement is not changed. In order to avoid technical difficulties in coupling finite element and machine learning software, we work with a splitting of the monolithic FSI system into three smaller subsystems. This allows to solve the mesh motion equation in a separate step. We assess the quality of the learned mesh motion technique by applying it to a FSI benchmark problem. In addition, we discuss generalizability and computational cost of the learned extension operators.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Machine Learning · MoDELS · Learning · 期望錯誤 ·
2024 年 2 月 27 日

Uncertainty quantification (UQ) to detect samples with large expected errors (outliers) is applied to reactive molecular potential energy surfaces (PESs). Three methods - Ensembles, Deep Evidential Regression (DER), and Gaussian Mixture Models (GMM) - were applied to the H-transfer reaction between ${\it syn-}$Criegee and vinyl hydroxyperoxide. The results indicate that ensemble models provide the best results for detecting outliers, followed by GMM. For example, from a pool of 1000 structures with the largest uncertainty, the detection quality for outliers is $\sim 90$ \% and $\sim 50$ \%, respectively, if 25 or 1000 structures with large errors are sought. On the contrary, the limitations of the statistical assumptions of DER greatly impacted its prediction capabilities. Finally, a structure-based indicator was found to be correlated with large average error, which may help to rapidly classify new structures into those that provide an advantage for refining the neural network.

The multiobjective evolutionary optimization algorithm (MOEA) is a powerful approach for tackling multiobjective optimization problems (MOPs), which can find a finite set of approximate Pareto solutions in a single run. However, under mild regularity conditions, the Pareto optimal set of a continuous MOP could be a low dimensional continuous manifold that contains infinite solutions. In addition, structure constraints on the whole optimal solution set, which characterize the patterns shared among all solutions, could be required in many real-life applications. It is very challenging for existing finite population based MOEAs to handle these structure constraints properly. In this work, we propose the first model-based algorithmic framework to learn the whole solution set with structure constraints for multiobjective optimization. In our approach, the Pareto optimality can be traded off with a preferred structure among the whole solution set, which could be crucial for many real-world problems. We also develop an efficient evolutionary learning method to train the set model with structure constraints. Experimental studies on benchmark test suites and real-world application problems demonstrate the promising performance of our proposed framework.

Data assimilation (DA) methods use priors arising from differential equations to robustly interpolate and extrapolate data. Popular techniques such as ensemble methods that handle high-dimensional, nonlinear PDE priors focus mostly on state estimation, however can have difficulty learning the parameters accurately. On the other hand, machine learning based approaches can naturally learn the state and parameters, but their applicability can be limited, or produce uncertainties that are hard to interpret. Inspired by the Integrated Nested Laplace Approximation (INLA) method in spatial statistics, we propose an alternative approach to DA based on iteratively linearising the dynamical model. This produces a Gaussian Markov random field at each iteration, enabling one to use INLA to infer the state and parameters. Our approach can be used for arbitrary nonlinear systems, while retaining interpretability, and is furthermore demonstrated to outperform existing methods on the DA task. By providing a more nuanced approach to handling nonlinear PDE priors, our methodology offers improved accuracy and robustness in predictions, especially where data sparsity is prevalent.

Neural operators learn mappings between function spaces, which is practical for learning solution operators of PDEs and other scientific modeling applications. Among them, the Fourier neural operator (FNO) is a popular architecture that performs global convolutions in the Fourier space. However, such global operations are often prone to over-smoothing and may fail to capture local details. In contrast, convolutional neural networks (CNN) can capture local features but are limited to training and inference at a single resolution. In this work, we present a principled approach to operator learning that can capture local features under two frameworks by learning differential operators and integral operators with locally supported kernels. Specifically, inspired by stencil methods, we prove that we obtain differential operators under an appropriate scaling of the kernel values of CNNs. To obtain local integral operators, we utilize suitable basis representations for the kernels based on discrete-continuous convolutions. Both these approaches preserve the properties of operator learning and, hence, the ability to predict at any resolution. Adding our layers to FNOs significantly improves their performance, reducing the relative L2-error by 34-72% in our experiments on turbulent 2D Navier-Stokes fluid flow and the spherical shallow water equations.

We present a stochastic method for efficiently computing the solution of time-fractional partial differential equations (fPDEs) that model anomalous diffusion problems of the subdiffusive type. After discretizing the fPDE in space, the ensuing system of fractional linear equations is solved resorting to a Monte Carlo evaluation of the corresponding Mittag-Leffler matrix function. This is accomplished through the approximation of the expected value of a suitable multiplicative functional of a stochastic process, which consists of a Markov chain whose sojourn times in every state are Mittag-Leffler distributed. The resulting algorithm is able to calculate the solution at conveniently chosen points in the domain with high efficiency. In addition, we present how to generalize this algorithm in order to compute the complete solution. For several large-scale numerical problems, our method showed remarkable performance in both shared-memory and distributed-memory systems, achieving nearly perfect scalability up to 16,384 CPU cores.

Ptychography is a computational imaging technique that aims to reconstruct the object of interest from a set of diffraction patterns. Each of these is obtained by a localized illumination of the object, which is shifted after each illumination to cover its whole domain. As in the resulting measurements the phase information is lost, ptychography gives rise to solving a phase retrieval problem. In this work, we consider ptychographic measurements corrupted with background noise, a type of additive noise that is independent of the shift, i.e., it is the same for all diffraction patterns. Two algorithms are provided, for arbitrary objects and for so-called phase objects that do not absorb the light but only scatter it. For the second type, a uniqueness of reconstruction is established for almost every object. Our approach is based on the Wigner Distribution Deconvolution, which lifts the object to a higher-dimensional matrix space where the recovery can be reformulated as a linear problem. Background noise only affects a few equations of the linear system that are therefore discarded. The lost information is then restored using redundancy in the higher-dimensional space. Keywords: phase retrieval, ptychography, background noise, Wigner Distribution Deconvolution, uniqueness of reconstruction.

We examine the possibility of approximating Maximum Vertex-Disjoint Shortest Paths. In this problem, the input is an edge-weighted (directed or undirected) $n$-vertex graph $G$ along with $k$ terminal pairs $(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)$. The task is to connect as many terminal pairs as possible by pairwise vertex-disjoint paths such that each path is a shortest path between the respective terminals. Our work is anchored in the recent breakthrough by Lochet [SODA '21], which demonstrates the polynomial-time solvability of the problem for a fixed value of $k$. Lochet's result implies the existence of a polynomial-time $ck$-approximation for Maximum Vertex-Disjoint Shortest Paths, where $c \leq 1$ is a constant. Our first result suggests that this approximation algorithm is, in a sense, the best we can hope for. More precisely, assuming the gap-ETH, we exclude the existence of an $o(k)$-approximations within $f(k) \cdot $poly($n$) time for any function $f$ that only depends on $k$. Our second result demonstrates the infeasibility of achieving an approximation ratio of $n^{\frac{1}{2}-\varepsilon}$ in polynomial time, unless P = NP. It is not difficult to show that a greedy algorithm selecting a path with the minimum number of arcs results in a $\lceil\sqrt{\ell}\rceil$-approximation, where $\ell$ is the number of edges in all the paths of an optimal solution. Since $\ell \leq n$, this underscores the tightness of the $n^{\frac{1}{2}-\varepsilon}$-inapproximability bound. Additionally, we establish that Maximum Vertex-Disjoint Shortest Paths is fixed-parameter tractable when parameterized by $\ell$ but does not admit a polynomial kernel. Our hardness results hold for undirected graphs with unit weights, while our positive results extend to scenarios where the input graph is directed and features arbitrary (non-negative) edge weights.

We propose a novel data-driven linear inverse model, called Colored-LIM, to extract the linear dynamics and diffusion matrix that define a linear stochastic process driven by an Ornstein-Uhlenbeck colored-noise. The Colored-LIM is a new variant of the classical linear inverse model (LIM) which relies on the white noise assumption. Similar to LIM, the Colored-LIM approximates the linear dynamics from a finite realization of a stochastic process and then solves the diffusion matrix based on, for instance, a generalized fluctuation-dissipation relation, which can be done by solving a system of linear equations. The main difficulty is that in practice, the colored-noise process can be hardly observed while it is correlated to the stochastic process of interest. Nevertheless, we show that the local behavior of the correlation function of the observable encodes the dynamics of the stochastic process and the diffusive behavior of the colored-noise. In this article, we review the classical LIM and develop Colored-LIM with a mathematical background and rigorous derivations. In the numerical experiments, we examine the performance of both LIM and Colored-LIM. Finally, we discuss some false attempts to build a linear inverse model for colored-noise driven processes, and investigate the potential misuse and its consequence of LIM in the appendices.

Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

北京阿比特科技有限公司