亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $\Phi$ be a random $k$-CNF formula on $n$ variables and $m$ clauses, where each clause is a disjunction of $k$ literals chosen independently and uniformly. Our goal is to sample an approximately uniform solution of $\Phi$ (or equivalently, approximate the partition function of $\Phi$). Let $\alpha=m/n$ be the density. The previous best algorithm runs in time $n^{\mathsf{poly}(k,\alpha)}$ for any $\alpha\lesssim2^{k/300}$ [Galanis, Goldberg, Guo, and Yang, SIAM J. Comput.'21]. Our result significantly improves both bounds by providing an almost-linear time sampler for any $\alpha\lesssim2^{k/3}$. The density $\alpha$ captures the \emph{average degree} in the random formula. In the worst-case model with bounded \emph{maximum degree}, current best efficient sampler works up to degree bound $2^{k/5}$ [He, Wang, and Yin, FOCS'22 and SODA'23], which is, for the first time, superseded by its average-case counterpart due to our $2^{k/3}$ bound. Our result is the first progress towards establishing the intuition that the solvability of the average-case model (random $k$-CNF formula with bounded average degree) is better than the worst-case model (standard $k$-CNF formula with bounded maximal degree) in terms of sampling solutions.

相關內容

A searcher faces a graph with edge lengths and vertex weights, initially having explored only a given starting vertex. In each step, the searcher adds an edge to the solution that connects an unexplored vertex to an explored vertex. This requires an amount of time equal to the edge length. The goal is to minimize the weighted sum of the exploration times over all vertices. We show that this problem is hard to approximate and provide algorithms with improved approximation guarantees. For the general case, we give a $(2\mathrm{e}+\varepsilon)$-approximation for any $\varepsilon > 0$. For the case that all vertices have unit weight, we provide a $2\mathrm{e}$-approximation. Finally, we provide a PTAS for the case of a Euclidean graph. Previously, for all cases only an $8$-approximation was known.

Sampling from Gibbs distributions $p(x) \propto \exp(-V(x)/\varepsilon)$ and computing their log-partition function are fundamental tasks in statistics, machine learning, and statistical physics. However, while efficient algorithms are known for convex potentials $V$, the situation is much more difficult in the non-convex case, where algorithms necessarily suffer from the curse of dimensionality in the worst case. For optimization, which can be seen as a low-temperature limit of sampling, it is known that smooth functions $V$ allow faster convergence rates. Specifically, for $m$-times differentiable functions in $d$ dimensions, the optimal rate for algorithms with $n$ function evaluations is known to be $O(n^{-m/d})$, where the constant can potentially depend on $m, d$ and the function to be optimized. Hence, the curse of dimensionality can be alleviated for smooth functions at least in terms of the convergence rate. Recently, it has been shown that similarly fast rates can also be achieved with polynomial runtime $O(n^{3.5})$, where the exponent $3.5$ is independent of $m$ or $d$. Hence, it is natural to ask whether similar rates for sampling and log-partition computation are possible, and whether they can be realized in polynomial time with an exponent independent of $m$ and $d$. We show that the optimal rates for sampling and log-partition computation are sometimes equal and sometimes faster than for optimization. We then analyze various polynomial-time sampling algorithms, including an extension of a recent promising optimization approach, and find that they sometimes exhibit interesting behavior but no near-optimal rates. Our results also give further insights on the relation between sampling, log-partition, and optimization problems.

Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in $L^2$. In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in $L^2$ can be upper bounded by best $n$-term trigonometric widths in $L^\infty$. We describe a recovery procedure from $m$ function values based on $\ell^1$-minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of $m^{-1/2}$ (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to $S^r_pW(\mathbb{T}^d)$ on the $d$-torus with a logarithmically better rate of convergence than any linear method can achieve when $1 < p < 2$ and $d$ is large. This effect is not present for isotropic Sobolev spaces.

An $f$-edge fault-tolerant distance sensitive oracle} ($f$-DSO) with stretch $\sigma \ge 1$ is a data structure that preprocesses a given undirected, unweighted graph $G$ with $n$ vertices and $m$ edges, and a positive integer $f$. When queried with a pair of vertices $s, t$ and a set $F$ of at most $f$ edges, it returns a $\sigma$-approximation of the $s$-$t$-distance in $G-F$. We study $f$-DSOs that take subquadratic space. Thorup and Zwick [JACM 2005] showed that this is only possible for $\sigma \ge 3$. We present, for any constant $f \ge 1$ and $\alpha \in (0, \frac{1}{2})$, and any $\varepsilon > 0$, an $f$-DSO with stretch $3 + \varepsilon$ that takes $\widetilde{O}(n^{2-\frac{\alpha}{f+1}}/\varepsilon) \cdot O(\log n/\varepsilon)^{f+1}$ space and has an $O(n^\alpha/\varepsilon^2)$ query time. We also give an improved construction for graphs with diameter at most $D$. For any constant $k$, we devise an $f$-DSO with stretch $2k-1$ that takes $O(D^{f+o(1)} n^{1+1/k})$ space and has $\widetilde{O}(D^{o(1)})$ query time, with a preprocessing time of $O(D^{f+o(1)} mn^{1/k})$. Chechik, Cohen, Fiat, and Kaplan [SODA 2017] devised an $f$-DSO with stretch $1+\varepsilon$ and preprocessing time $O_\varepsilon(n^{5+o(1)})$, albeit with a super-quadratic space requirement. We show how to reduce their preprocessing time to $O_{\varepsilon}(mn^{2+o(1)})$.

The classical Minkowski problem for convex bodies has deeply influenced the development of differential geometry. During the past several decades, abundant mathematical theories have been developed for studying the solutions of the Minkowski problem, however, the numerical solution of this problem has been largely left behind, with only few methods available to achieve that goal. In this article, focusing on the two-dimensional Minkowski problem with Dirichlet boundary conditions, we introduce two solution methods, both based on operator-splitting. One of these two methods deals directly with the Dirichlet condition, while the other method uses an approximation of this Dirichlet condition. This relaxation of the Dirichlet condition makes this second method better suited than the first one to treat those situations where the Minkowski and the Dirichlet condition are not compatible. Both methods are generalizations of the solution method for the canonical Monge-Amp\`{e}re equation discussed by Glowinski et al. (Journal of Scientific Computing, 79(1), 1-47, 2019); as such they take advantage of a divergence formulation of the Minkowski problem, well-suited to a mixed finite element approximation, and to the the time-discretization via an operator-splitting scheme, of an associated initial value problem. Our methodology can be easily implemented on convex domains of rather general shape (with curved boundaries, possibly). The numerical experiments we performed validate both methods and show that if one uses continuous piecewise affine finite element approximations of the smooth solution of the Minkowski problem and of its three second order derivatives, these two methods provide nearly second order accuracy for the $L^2$ and $L^{\infty}$ error. One can extend easily the methods discussed in this article, to address the solution of three-dimensional Minkowski problem.

It is widely believed that a joint factor analysis of item responses and response time (RT) may yield more precise ability scores that are conventionally predicted from responses only. For this purpose, a simple-structure factor model is often preferred as it only requires specifying an additional measurement model for item-level RT while leaving the original item response theory (IRT) model for responses intact. The added speed factor indicated by item-level RT correlates with the ability factor in the IRT model, allowing RT data to carry additional information about respondents' ability. However, parametric simple-structure factor models are often restrictive and fit poorly to empirical data, which prompts under-confidence in the suitablity of a simple factor structure. In the present paper, we analyze the 2015 Programme for International Student Assessment (PISA) mathematics data using a semiparametric simple-structure model. We conclude that a simple factor structure attains a decent fit after further parametric assumptions in the measurement model are sufficiently relaxed. Furthermore, our semiparametric model implies that the association between latent ability and speed/slowness is strong in the population, but the form of association is nonlinear. It follows that scoring based on the fitted model can substantially improve the precision of ability scores.

We prove a stability result for general $3$-wise correlations over distributions satisfying mild connectivity properties. More concretely, we show that if $\Sigma,\Gamma$ and $\Phi$ are alphabets of constant size, and $\mu$ is a pairwise connected distribution over $\Sigma\times\Gamma\times\Phi$ with no $(\mathbb{Z},+)$ embeddings in which the probability of each atom is $\Omega(1)$, then the following holds. Any triplets of $1$-bounded functions $f\colon \Sigma^n\to\mathbb{C}$, $g\colon \Gamma^n\to\mathbb{C}$, $h\colon \Phi^n\to\mathbb{C}$ satisfying \[ \left|\mathbb{E}_{(x,y,z)\sim \mu^{\otimes n}}\big[f(x)g(y)h(z)\big]\right|\geq \varepsilon \] must arise from an Abelian group associated with the distribution $\mu$. More specifically, we show that there is an Abelian group $(H,+)$ of constant size such that for any such $f,g$ and $h$, the function $f$ (and similarly $g$ and $h$) is correlated with a function of the form $\tilde{f}(x) = \chi(\sigma(x_1),\ldots,\sigma(x_n)) L (x)$, where $\sigma\colon \Sigma \to H$ is some map, $\chi\in \hat{H}^{\otimes n}$ is a character, and $L\colon \Sigma^n\to\mathbb{C}$ is a low-degree function with bounded $2$-norm. En route we prove a few additional results that may be of independent interest, such as an improved direct product theorem, as well as a result we refer to as a ``restriction inverse theorem'' about the structure of functions that, under random restrictions, with noticeable probability have significant correlation with a product function. In companion papers, we show applications of our results to the fields of Probabilistically Checkable Proofs, as well as various areas in discrete mathematics such as extremal combinatorics and additive combinatorics.

The exponential-family random graph models (ERGMs) have emerged as an important framework for modeling social networks for a wide variety of relational types. ERGMs for valued networks are less well-developed than their unvalued counterparts, and pose particular computational challenges. Network data with edge values on the non-negative integers (count-valued networks) is an important such case, with examples ranging from the magnitude of migration and trade flows between places to the frequency of interactions and encounters between individuals. Here, we propose an efficient parallelable subsampled maximum pseudo-likelihood estimation (MPLE) scheme for count-valued ERGMs, and compare its performance with existing Contrastive Divergence (CD) and Monte Carlo Maximum Likelihood Estimation (MCMLE) approaches via a simulation study based on migration flow networks in two U.S. states. Our results suggest that edge value variance is a key factor in method performance, while network size mainly influences their relative merits in computational time. For small-variance networks, all methods perform well in point estimations while CD greatly overestimates uncertainties, and MPLE underestimates them for dependence terms; all methods have fast estimation for small networks, but CD and subsampled multi-core MPLE provides speed advantages as network size increases. For large-variance networks, both MPLE and MCMLE offer high-quality estimates of coefficients and their uncertainty, but MPLE is significantly faster than MCMLE; MPLE is also a better seeding method for MCMLE than CD, as the latter makes MCMLE more prone to convergence failure.

We study the following two related problems. The first is to determine to what error an arbitrary zonoid in $\mathbb{R}^{d+1}$ can be approximated in the Hausdorff distance by a sum of $n$ line segments. The second is to determine optimal approximation rates in the uniform norm for shallow ReLU$^k$ neural networks on their variation spaces. The first of these problems has been solved for $d\neq 2,3$, but when $d=2,3$ a logarithmic gap between the best upper and lower bounds remains. We close this gap, which completes the solution in all dimensions. For the second problem, our techniques significantly improve upon existing approximation rates when $k\geq 1$, and enable uniform approximation of both the target function and its derivatives.

Confounding is a significant obstacle to unbiased estimation of causal effects from observational data. For settings with high-dimensional covariates -- such as text data, genomics, or the behavioral social sciences -- researchers have proposed methods to adjust for confounding by adapting machine learning methods to the goal of causal estimation. However, empirical evaluation of these adjustment methods has been challenging and limited. In this work, we build on a promising empirical evaluation strategy that simplifies evaluation design and uses real data: subsampling randomized controlled trials (RCTs) to create confounded observational datasets while using the average causal effects from the RCTs as ground-truth. We contribute a new sampling algorithm, which we call RCT rejection sampling, and provide theoretical guarantees that causal identification holds in the observational data to allow for valid comparisons to the ground-truth RCT. Using synthetic data, we show our algorithm indeed results in low bias when oracle estimators are evaluated on the confounded samples, which is not always the case for a previously proposed algorithm. In addition to this identification result, we highlight several finite data considerations for evaluation designers who plan to use RCT rejection sampling on their own datasets. As a proof of concept, we implement an example evaluation pipeline and walk through these finite data considerations with a novel, real-world RCT -- which we release publicly -- consisting of approximately 70k observations and text data as high-dimensional covariates. Together, these contributions build towards a broader agenda of improved empirical evaluation for causal estimation.

北京阿比特科技有限公司