亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Membership inference (MI) attacks threaten user privacy through determining if a given data example has been used to train a target model. However, it has been increasingly recognized that the "comparing different MI attacks" methodology used in the existing works has serious limitations. Due to these limitations, we found (through the experiments in this work) that some comparison results reported in the literature are quite misleading. In this paper, we seek to develop a comprehensive benchmark for comparing different MI attacks, called MIBench, which consists not only the evaluation metrics, but also the evaluation scenarios. And we design the evaluation scenarios from four perspectives: the distance distribution of data samples in the target dataset, the distance between data samples of the target dataset, the differential distance between two datasets (i.e., the target dataset and a generated dataset with only nonmembers), and the ratio of the samples that are made no inferences by an MI attack. The evaluation metrics consist of ten typical evaluation metrics. We have identified three principles for the proposed "comparing different MI attacks" methodology, and we have designed and implemented the MIBench benchmark with 84 evaluation scenarios for each dataset. In total, we have used our benchmark to fairly and systematically compare 15 state-of-the-art MI attack algorithms across 588 evaluation scenarios, and these evaluation scenarios cover 7 widely used datasets and 7 representative types of models. All codes and evaluations of MIBench are publicly available at //github.com/MIBench/MIBench.github.io/blob/main/README.md.

相關內容

Visualizations for scattered data are used to make users understand certain attributes of their data by solving different tasks, e.g. correlation estimation, outlier detection, cluster separation. In this paper, we focus on the later task, and develop a technique that is aligned to human perception, that can be used to understand how human subjects perceive clusterings in scattered data and possibly optimize for better understanding. Cluster separation in scatterplots is a task that is typically tackled by widely used clustering techniques, such as for instance k-means or DBSCAN. However, as these algorithms are based on non-perceptual metrics, we can show in our experiments, that their output do not reflect human cluster perception. We propose a learning strategy which directly operates on scattered data. To learn perceptual cluster separation on this data, we crowdsourced a large scale dataset, consisting of 7,320 point-wise cluster affiliations for bivariate data, which has been labeled by 384 human crowd workers. Based on this data, we were able to train ClusterNet, a point-based deep learning model, trained to reflect human perception of cluster separability. In order to train ClusterNet on human annotated data, we use a PointNet++ architecture enabling inference on point clouds directly. In this work, we provide details on how we collected our dataset, report statistics of the resulting annotations, and investigate perceptual agreement of cluster separation for real-world data. We further report the training and evaluation protocol of ClusterNet and introduce a novel metric, that measures the accuracy between a clustering technique and a group of human annotators. Finally, we compare our approach against existing state-of-the-art clustering techniques and can show, that ClusterNet is able to generalize to unseen and out of scope data.

The vulnerabilities to backdoor attacks have recently threatened the trustworthiness of machine learning models in practical applications. Conventional wisdom suggests that not everyone can be an attacker since the process of designing the trigger generation algorithm often involves significant effort and extensive experimentation to ensure the attack's stealthiness and effectiveness. Alternatively, this paper shows that there exists a more severe backdoor threat: anyone can exploit an easily-accessible algorithm for silent backdoor attacks. Specifically, this attacker can employ the widely-used lossy image compression from a plethora of compression tools to effortlessly inject a trigger pattern into an image without leaving any noticeable trace; i.e., the generated triggers are natural artifacts. One does not require extensive knowledge to click on the "convert" or "save as" button while using tools for lossy image compression. Via this attack, the adversary does not need to design a trigger generator as seen in prior works and only requires poisoning the data. Empirically, the proposed attack consistently achieves 100% attack success rate in several benchmark datasets such as MNIST, CIFAR-10, GTSRB and CelebA. More significantly, the proposed attack can still achieve almost 100% attack success rate with very small (approximately 10%) poisoning rates in the clean label setting. The generated trigger of the proposed attack using one lossy compression algorithm is also transferable across other related compression algorithms, exacerbating the severity of this backdoor threat. This work takes another crucial step toward understanding the extensive risks of backdoor attacks in practice, urging practitioners to investigate similar attacks and relevant backdoor mitigation methods.

Object detection is the foundation of various critical computer-vision tasks such as segmentation, object tracking, and event detection. To train an object detector with satisfactory accuracy, a large amount of data is required. However, due to the intensive workforce involved with annotating large datasets, such a data curation task is often outsourced to a third party or relied on volunteers. This work reveals severe vulnerabilities of such data curation pipeline. We propose MACAB that crafts clean-annotated images to stealthily implant the backdoor into the object detectors trained on them even when the data curator can manually audit the images. We observe that the backdoor effect of both misclassification and the cloaking are robustly achieved in the wild when the backdoor is activated with inconspicuously natural physical triggers. Backdooring non-classification object detection with clean-annotation is challenging compared to backdooring existing image classification tasks with clean-label, owing to the complexity of having multiple objects within each frame, including victim and non-victim objects. The efficacy of the MACAB is ensured by constructively i abusing the image-scaling function used by the deep learning framework, ii incorporating the proposed adversarial clean image replica technique, and iii combining poison data selection criteria given constrained attacking budget. Extensive experiments demonstrate that MACAB exhibits more than 90% attack success rate under various real-world scenes. This includes both cloaking and misclassification backdoor effect even restricted with a small attack budget. The poisoned samples cannot be effectively identified by state-of-the-art detection techniques.The comprehensive video demo is at //youtu.be/MA7L_LpXkp4, which is based on a poison rate of 0.14% for YOLOv4 cloaking backdoor and Faster R-CNN misclassification backdoor.

Existing reference-free turn-level evaluation metrics for chatbots inadequately capture the interaction between the user and the system. Consequently, they often correlate poorly with human evaluations. To address this issue, we propose a novel model-agnostic approach that leverages Conditional Pointwise Mutual Information (C-PMI) to measure the turn-level interaction between the system and the user based on a given evaluation dimension. Experimental results on the widely used FED dialogue evaluation dataset demonstrate that our approach significantly improves the correlation with human judgment compared with existing evaluation systems. By replacing the negative log-likelihood-based scorer with our proposed C-PMI scorer, we achieve a relative 62.6% higher Spearman correlation on average for the FED evaluation metric. Our code is publicly available at //github.com/renll/C-PMI.

With recent rapid growth of large language models (LLMs), discrete speech tokenization has played an important role for injecting speech into LLMs. However, this discretization gives rise to a loss of information, consequently impairing overall performance. To improve the performance of these discrete speech tokens, we present RepCodec, a novel speech representation codec for semantic speech tokenization. In contrast to audio codecs which reconstruct the raw audio, RepCodec learns a vector quantization codebook through reconstructing speech representations from speech encoders like HuBERT or data2vec. Together, the speech encoder, the codec encoder and the vector quantization codebook form a pipeline for converting speech waveforms into semantic tokens. The extensive experiments illustrate that RepCodec, by virtue of its enhanced information retention capacity, significantly outperforms the widely used k-means clustering approach in both speech understanding and generation. Furthermore, this superiority extends across various speech encoders and languages, affirming the robustness of RepCodec. We believe our method can facilitate large language modeling research on speech processing.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

北京阿比特科技有限公司