In this paper, we propose R\'enyi information generating function (RIGF) and discuss its various properties. The relation between the RIGF and Shannon entropy of order $q>0$ is established. Several bounds are obtained. The RIGF of escort distribution is also derived. Furthermore, we introduce R\'enyi divergence information generating function (RDIGF) and discuss its effect under monotone transformations. Next, we propose Jensen-R\'enyi information generating function (JRIGF) and establish its properties. In addition, we present non-parametric and parametric estimators of the RIGF. For illustrative purpose, a simulation study is carried out and a real data relating to the failure times of electronic components is analyzed. Finally, a comparison study between the non-parametric and parametric estimators is made in terms of absolute bias and mean square error (MSE).
Determining the complexity of computing Gr\"{o}bner bases is an important problem both in theory and in practice, and for that the solving degree plays a key role. In this paper, we study the solving degrees of affine semi-regular sequences and their homogenized sequences. Some of our results are considered to give mathematically rigorous proofs of the correctness of methods for computing Gr\"{o}bner bases of the ideal generated by an affine semi-regular sequence. This paper is a sequel of the authors' previous work and gives additional results on the solving degrees and important behaviors of Gr\"obner basis computation. We also define the generalized degree of regularity for a sequence of homogeneous polynomials. For the homogenization of an affine semi-regular sequence, we relate its generalized degree of regularity with its maximal Gr\"{o}bner basis degree (i.e., the solving degree of the homogenized sequence). The definition of a generalized (cryptographic) semi-regular sequence is also given, and it derives a new cryptographic assumption to estimate the security of cryptosystems and signature schemes. From our experimental observation, we raise a conjecture and some questions related to this generalized semi-regularity. These new definitions and our results provide a theoretical formulation of (somehow heuristic) discussions done so far in the cryptographic community.
In this paper, we introduce and analyze a variant of the Thompson sampling (TS) algorithm for contextual bandits. At each round, traditional TS requires samples from the current posterior distribution, which is usually intractable. To circumvent this issue, approximate inference techniques can be used and provide samples with distribution close to the posteriors. However, current approximate techniques yield to either poor estimation (Laplace approximation) or can be computationally expensive (MCMC methods, Ensemble sampling...). In this paper, we propose a new algorithm, Varational Inference Thompson sampling VITS, based on Gaussian Variational Inference. This scheme provides powerful posterior approximations which are easy to sample from, and is computationally efficient, making it an ideal choice for TS. In addition, we show that VITS achieves a sub-linear regret bound of the same order in the dimension and number of round as traditional TS for linear contextual bandit. Finally, we demonstrate experimentally the effectiveness of VITS on both synthetic and real world datasets.
In this paper, various properties of core-EP matrices are investigated. We introduce the MPDMP matrix associated with $A$ and by means of it, some properties and equivalent conditions of core-EP matrices can be obtained. Also, properties of MPD, DMP, and CMP inverses are studied and we prove that in the class of core-EP matrices, DMP, MPD, and Drazin inverses are the same. Moreover, DMP and MPD binary relation orders are introduced and the relationship between these orders and other binary relation orders are considered.
Researchers would often like to leverage data from a collection of sources (e.g., primary studies in a meta-analysis) to estimate causal effects in a target population of interest. However, traditional meta-analytic methods do not produce causally interpretable estimates for a well-defined target population. In this paper, we present the CausalMetaR R package, which implements efficient and robust methods to estimate causal effects in a given internal or external target population using multi-source data. The package includes estimators of average and subgroup treatment effects for the entire target population. To produce efficient and robust estimates of causal effects, the package implements doubly robust and non-parametric efficient estimators and supports using flexible data-adaptive (e.g., machine learning techniques) methods and cross-fitting techniques to estimate the nuisance models (e.g., the treatment model, the outcome model). We describe the key features of the package and demonstrate how to use the package through an example.
We propose a novel framework of generalised Petrov-Galerkin Dynamical Low Rank Approximations (DLR) in the context of random PDEs. It builds on the standard Dynamical Low Rank Approximations in their Dynamically Orthogonal formulation. It allows to seamlessly build-in many standard and well-studied stabilisation techniques that can be framed as either generalised Galerkin methods, or Petrov-Galerkin methods. The framework is subsequently applied to the case of Streamine Upwind/Petrov Galerkin (SUPG) stabilisation of advection-dominated problems with small stochastic perturbations of the transport field. The norm-stability properties of two time discretisations are analysed. Numerical experiments confirm that the stabilising properties of the SUPG method naturally carry over to the DLR framework.
The movement of small but finite spherical particles in a fluid can be described by the Maxey-Riley equation (MRE) if they are too large to be considered passive tracers. The MRE contains an integral "history term" modeling wake effects, which causes the force acting on a particle at some given time to depend on its full past trajectory. The history term causes complications in the numerical solution of the MRE and is therefore often neglected, despite both numerical and experimental evidence that its effects are generally not negligible. By numerically computing trajectories with and without the history term of a large number of particles in different flow fields, we investigate its impact on the large-scale Lagrangian dynamics of simulated particles. We show that for moderate to large Stokes numbers, ignoring the history term leads to significant differences in clustering patterns. Furthermore, we compute finite-time Lyapunov exponents and show that, even for small particles, the differences in the resulting scalar field from ignoring the BHT can be significant, in particular if the underlying flow is turbulent.
This article explores how the 'rules in use' from Ostrom's Institutional Analysis and Development Framework (IAD) can be developed as a context analysis approach for AI. AI risk assessment frameworks increasingly highlight the need to understand existing contexts. However, these approaches do not frequently connect with established institutional analysis scholarship. We outline a novel direction illustrated through a high-level example to understand how clinical oversight is potentially impacted by AI. Much current thinking regarding oversight for AI revolves around the idea of decision makers being in-the-loop and, thus, having capacity to intervene to prevent harm. However, our analysis finds that oversight is complex, frequently made by teams of professionals and relies upon explanation to elicit information. Professional bodies and liability also function as institutions of polycentric oversight. These are all impacted by the challenge of oversight of AI systems. The approach outlined has potential utility as a policy tool of context analysis aligned with the 'Govern and Map' functions of the National Institute of Standards and Technology (NIST) AI Risk Management Framework; however, further empirical research is needed. Our analysis illustrates the benefit of existing institutional analysis approaches in foregrounding team structures within oversight and, thus, in conceptions of 'human in the loop'.
Machine Learning (ML) in low-data settings remains an underappreciated yet crucial problem. Hence, data augmentation methods to increase the sample size of datasets needed for ML are key to unlocking the transformative potential of ML in data-deprived regions and domains. Unfortunately, the limited training set constrains traditional tabular synthetic data generators in their ability to generate a large and diverse augmented dataset needed for ML tasks. To address this challenge, we introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime. However, not all the data generated by LLMs will improve downstream utility, as for any generative model. Consequently, we introduce a principled curation mechanism, leveraging learning dynamics, coupled with confidence and uncertainty metrics, to obtain a high-quality dataset. Empirically, on multiple real-world datasets, we demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators. Additionally, we provide insights into the LLM generation and curation mechanism, shedding light on the features that enable them to output high-quality augmented datasets.
With wide application of Artificial Intelligence (AI), it has become particularly important to make decisions of AI systems explainable and transparent. In this paper, we proposed a new Explainable Artificial Intelligence (XAI) method called ShapG (Explanations based on Shapley value for Graphs) for measuring feature importance. ShapG is a model-agnostic global explanation method. At the first stage, it defines an undirected graph based on the dataset, where nodes represent features and edges are added based on calculation of correlation coefficients between features. At the second stage, it calculates an approximated Shapley value by sampling the data taking into account this graph structure. The sampling approach of ShapG allows to calculate the importance of features efficiently, i.e. to reduce computational complexity. Comparison of ShapG with other existing XAI methods shows that it provides more accurate explanations for two examined datasets. We also compared other XAI methods developed based on cooperative game theory with ShapG in running time, and the results show that ShapG exhibits obvious advantages in its running time, which further proves efficiency of ShapG. In addition, extensive experiments demonstrate a wide range of applicability of the ShapG method for explaining complex models. We find ShapG an important tool in improving explainability and transparency of AI systems and believe it can be widely used in various fields.
In this work, we introduce an open-source integrated CAD-CFD tool, Anvil, which combines FreeCAD for CAD modeling and OpenFOAM for CFD analysis, along with an AI-based optimization method (Bayesian optimization) and other sampling algorithms. Anvil serves as a scientific machine learning tool for shape optimization in three modes: data generation, CFD evaluation, and shape optimization. In data generation mode, it automatically runs CFD evaluations and generates data for training a surrogate model. In optimization mode, it searches for the optimal design under given requirements and optimization metrics. In CFD mode, a single CAD file can be evaluated with a single OpenFOAM run. To use Anvil, experimenters provide a JSON configuration file and a parametric CAD seed design. Anvil can be used to study solid-fluid dynamics for any subsonic flow conditions and has been demonstrated in various simulation and optimization use cases. The open-source code for the tool, installation process, artifacts (such as CAD seed designs and example STL models), experimentation results, and detailed documentation can be found at \url{//github.com/symbench/Anvil}.