Cosmological parameters encoding our understanding of the expansion history of the Universe can be constrained by the accurate estimation of time delays arising in gravitationally lensed systems. We propose TD-CARMA, a Bayesian method to estimate cosmological time delays by modelling the observed and irregularly sampled light curves as realizations of a Continuous Auto-Regressive Moving Average (CARMA) process. Our model accounts for heteroskedastic measurement errors and microlensing, an additional source of independent extrinsic long-term variability in the source brightness. The semi-separable structure of the CARMA covariance matrix allows for fast and scalable likelihood computation using Gaussian Process modeling. We obtain a sample from the joint posterior distribution of the model parameters using a nested sampling approach. This allows for ``painless'' Bayesian Computation, dealing with the expected multi-modality of the posterior distribution in a straightforward manner and not requiring the specification of starting values or an initial guess for the time delay, unlike existing methods. In addition, the proposed sampling procedure automatically evaluates the Bayesian evidence, allowing us to perform principled Bayesian model selection. TD-CARMA is parsimonious, and typically includes no more than a dozen unknown parameters. We apply TD-CARMA to six doubly lensed quasars HS 2209+1914, SDSS J1001+5027, SDSS J1206+4332, SDSS J1515+1511, SDSS J1455+1447, SDSS J1349+1227, estimating their time delays as $-21.96 \pm 1.448$, $120.93 \pm 1.015$, $111.51 \pm 1.452$, $210.80 \pm 2.18$, $45.36 \pm 1.93$ and $432.05 \pm 1.950$ respectively. These estimates are consistent with those derived in the relevant literature, but are typically two to four times more precise.
We consider the problem of computing a sparse binary representation of an image. To be precise, given an image and an overcomplete, non-orthonormal basis, we aim to find a sparse binary vector indicating the minimal set of basis vectors that when added together best reconstruct the given input. We formulate this problem with an $L_2$ loss on the reconstruction error, and an $L_0$ (or, equivalently, an $L_1$) loss on the binary vector enforcing sparsity. This yields a so-called Quadratic Unconstrained Binary Optimization (QUBO) problem, whose solution is generally NP-hard to find. The contribution of this work is twofold. First, the method of unsupervised and unnormalized dictionary feature learning for a desired sparsity level to best match the data is presented. Second, the binary sparse coding problem is then solved on the Loihi 1 neuromorphic chip by the use of stochastic networks of neurons to traverse the non-convex energy landscape. The solutions are benchmarked against the classical heuristic simulated annealing. We demonstrate neuromorphic computing is suitable for sampling low energy solutions of binary sparse coding QUBO models, and although Loihi 1 is capable of sampling very sparse solutions of the QUBO models, there needs to be improvement in the implementation in order to be competitive with simulated annealing.
The imposition of inhomogeneous Dirichlet (essential) boundary conditions is a fundamental challenge in the application of Galerkin-type methods based on non-interpolatory functions, i.e., functions which do not possess the Kronecker delta property. Such functions typically are used in various meshfree methods, as well as methods based on the isogeometric paradigm. The present paper analyses a model problem consisting of the Poisson equation subject to non-standard boundary conditions. Namely, instead of classical boundary conditions, the model problem involves Dirichlet- and Neumann-type nonlocal boundary conditions. Variational formulations with strongly and weakly imposed inhomogeneous Dirichlet-type nonlocal conditions are derived and compared within an extensive numerical study in the isogeometric framework based on non-uniform rational B-splines (NURBS). The attention in the numerical study is paid mainly to the influence of the nonlocal boundary conditions on the properties of the considered discretisation methods.
Visual attention forms the basis of understanding the visual world. In this work we follow a computational approach to investigate the biological basis of visual attention. We analyze retinal and cortical electrophysiological data from mouse. Visual Stimuli are Natural Images depicting real world scenes. Our results show that in primary visual cortex (V1), a subset of around $10\%$ of the neurons responds differently to salient versus non-salient visual regions. Visual attention information was not traced in retinal response. It appears that the retina remains naive concerning visual attention; cortical response gets modulated to interpret visual attention information. Experimental animal studies may be designed to further explore the biological basis of visual attention we traced in this study. In applied and translational science, our study contributes to the design of improved visual prostheses systems -- systems that create artificial visual percepts to visually impaired individuals by electronic implants placed on either the retina or the cortex.
In this paper we study geometric aspects of codes in the sum-rank metric. We establish the geometric description of generalised weights, and analyse the Delsarte and geometric dual operations. We establish a correspondence between maximum sum-rank distance codes and h-designs, extending the well-known correspondence between MDS codes and arcs in projective spaces and between MRD codes and h-scatttered subspaces. We use the geometric setting to construct new h-designs and new MSRD codes via new families of pairwise disjoint maximum scattered linear sets.
We study the Vector Bin Packing and the Vector Bin Covering problems, multidimensional generalizations of the Bin Packing and the Bin Covering problems, respectively. In the Vector Bin Packing, we are given a set of $d$-dimensional vectors from $[0,1]^d$ and the aim is to partition the set into the minimum number of bins such that for each bin $B$, each component of the sum of the vectors in $B$ is at most 1. Woeginger [Woe97] claimed that the problem has no APTAS for dimensions greater than or equal to 2. We note that there was a slight oversight in the original proof. In this work, we give a revised proof using some additional ideas from [BCKS06,CC09]. In fact, we show that it is NP-hard to get an asymptotic approximation ratio better than $\frac{600}{599}$. An instance of Vector Bin Packing is called $\delta$-skewed if every item has at most one dimension greater than $\delta$. As a natural extension of our general $d$-Dimensional Vector Bin Packing result we show that for $\varepsilon\in (0,\frac{1}{2500})$ it is NP-hard to obtain a $(1+\varepsilon)$-approximation for $\delta$-Skewed Vector Bin Packing if $\delta>20\sqrt \varepsilon$. In the Vector Bin Covering problem given a set of $d$-dimensional vectors from $[0,1]^d$, the aim is to obtain a family of disjoint subsets (called bins) with the maximum cardinality such that for each bin $B$, each component of the sum of the vectors in $B$ is at least 1. Using ideas similar to our Vector Bin Packing result, we show that for Vector Bin Covering there is no APTAS for dimensions greater than or equal to 2. In fact, we show that it is NP-hard to get an asymptotic approximation ratio better than $\frac{998}{997}$.
Hopfield networks are an attractive choice for solving many types of computational problems because they provide a biologically plausible mechanism. The Self-Optimization (SO) model adds to the Hopfield network by using a biologically founded Hebbian learning rule, in combination with repeated network resets to arbitrary initial states, for optimizing its own behavior towards some desirable goal state encoded in the network. In order to better understand that process, we demonstrate first that the SO model can solve concrete combinatorial problems in SAT form, using two examples of the Liars problem and the map coloring problem. In addition, we show how under some conditions critical information might get lost forever with the learned network producing seemingly optimal solutions that are in fact inappropriate for the problem it was tasked to solve. What appears to be an undesirable side-effect of the SO model, can provide insight into its process for solving intractable problems.
In this paper, we investigate the properties of standard and multilevel Monte Carlo methods for weak approximation of solutions of stochastic differential equations (SDEs) driven by the infinite-dimensional Wiener process and Poisson random measure with the Lipschitz payoff function. The error of the truncated dimension randomized numerical scheme, which is determined by two parameters, i.e grid density $n \in \mathbb{N}_{+}$ and truncation dimension parameter $M \in \mathbb{N}_{+},$ is of the order $n^{-1/2}+\delta(M)$ such that $\delta(\cdot)$ is positive and decreasing to $0$. The paper introduces the complexity model and provides proof for the upper complexity bound of the multilevel Monte Carlo method which depends on two increasing sequences of parameters for both $n$ and $M.$ The complexity is measured in terms of upper bound for mean-squared error and compared with the complexity of the standard Monte Carlo algorithm. The results from numerical experiments as well as Python and CUDA C implementation are also reported.
Human interactions create social networks forming the backbone of societies. Individuals adjust their opinions by exchanging information through social interactions. Two recurrent questions are whether social structures promote opinion polarisation or consensus in societies and whether polarisation can be avoided, particularly on social media. In this paper, we hypothesise that not only network structure but also the timings of social interactions regulate the emergence of opinion clusters. We devise a temporal version of the Deffuant opinion model where pairwise interactions follow temporal patterns and show that burstiness alone is sufficient to refrain from consensus and polarisation by promoting the reinforcement of local opinions. Individuals self-organise into a multi-partisan society due to network clustering, but the diversity of opinion clusters further increases with burstiness, particularly when individuals have low tolerance and prefer to adjust to similar peers. The emergent opinion landscape is well-balanced regarding clusters' size, with a small fraction of individuals converging to extreme opinions. We thus argue that polarisation is more likely to emerge in social media than offline social networks because of the relatively low social clustering observed online. Counter-intuitively, strengthening online social networks by increasing social redundancy may be a venue to reduce polarisation and promote opinion diversity.
Monte Carlo methods represent a cornerstone of computer science. They allow to sample high dimensional distribution functions in an efficient way. In this paper we consider the extension of Automatic Differentiation (AD) techniques to Monte Carlo process, addressing the problem of obtaining derivatives (and in general, the Taylor series) of expectation values. Borrowing ideas from the lattice field theory community, we examine two approaches. One is based on reweighting while the other represents an extension of the Hamiltonian approach typically used by the Hybrid Monte Carlo (HMC) and similar algorithms. We show that the Hamiltonian approach can be understood as a change of variables of the reweighting approach, resulting in much reduced variances of the coefficients of the Taylor series. This work opens the door to find other variance reduction techniques for derivatives of expectation values.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.