The goal of this work was to apply the ``Gale-Shapley'' algorithm to a real-world problem. We analyzed the pairing of influencers with merchants, and after a detailed specification of the variables involved, we conducted experiments to observe the validity of the approach. We conducted an analysis of the problem of aligning the interests of merchants to have digital influencers promote their products and services. We propose applying the matching algorithm approach to address this issue. We demonstrate that it is possible to apply the algorithm and still achieve corporate objectives by translating performance indicators into the desired ranking of influencers and product campaigns to be advertised by merchants.
AI Uncertainty Quantification (UQ) has the potential to improve human decision-making beyond AI predictions alone by providing additional probabilistic information to users. The majority of past research on AI and human decision-making has concentrated on model explainability and interpretability, with little focus on understanding the potential impact of UQ on human decision-making. We evaluated the impact on human decision-making for instance-level UQ, calibrated using a strict scoring rule, in two online behavioral experiments. In the first experiment, our results showed that UQ was beneficial for decision-making performance compared to only AI predictions. In the second experiment, we found UQ had generalizable benefits for decision-making across a variety of representations for probabilistic information. These results indicate that implementing high quality, instance-level UQ for AI may improve decision-making with real systems compared to AI predictions alone.
Wordle, a word guessing game rose to global popularity in the January of 2022. The goal of the game is to guess a five-letter English word within six tries. Each try provides the player with hints by means of colour changing tiles which inform whether or not a given character is part of the solution as well as, in cases where it is part of the solution, whether or not it is in the correct placement. Numerous attempts have been made to find the best starting word and best strategy to solve the daily wordle. This study uses character statistics of five-letter words to determine the best three starting words.
Humans extract useful abstractions of the world from noisy sensory data. Serial reproduction allows us to study how people construe the world through a paradigm similar to the game of telephone, where one person observes a stimulus and reproduces it for the next to form a chain of reproductions. Past serial reproduction experiments typically employ a single sensory modality, but humans often communicate abstractions of the world to each other through language. To investigate the effect language on the formation of abstractions, we implement a novel multimodal serial reproduction framework by asking people who receive a visual stimulus to reproduce it in a linguistic format, and vice versa. We ran unimodal and multimodal chains with both humans and GPT-4 and find that adding language as a modality has a larger effect on human reproductions than GPT-4's. This suggests human visual and linguistic representations are more dissociable than those of GPT-4.
We investigated the human capacity to acquire multiple visuomotor mappings for de novo skills. Using a grid navigation paradigm, we tested whether contextual cues implemented as different "grid worlds", allow participants to learn two distinct key-mappings more efficiently. Our results indicate that when contextual information is provided, task performance is significantly better. The same held true for meta-reinforcement learning agents that differed in whether or not they receive contextual information when performing the task. We evaluated their accuracy in predicting human performance in the task and analyzed their internal representations. The results indicate that contextual cues allow the formation of separate representations in space and time when using different visuomotor mappings, whereas the absence of them favors sharing one representation. While both strategies can allow learning of multiple visuomotor mappings, we showed contextual cues provide a computational advantage in terms of how many mappings can be learned.
Estimating the ground state energy of a local Hamiltonian is a central problem in quantum chemistry. In order to further investigate its complexity and the potential of quantum algorithms for quantum chemistry, Gharibian and Le Gall (STOC 2022) recently introduced the guided local Hamiltonian problem (GLH), which is a variant of the local Hamiltonian problem where an approximation of a ground state (which is called a guiding state) is given as an additional input. Gharibian and Le Gall showed quantum advantage (more precisely, BQP-completeness) for GLH with $6$-local Hamiltonians when the guiding state has fidelity (inverse-polynomially) close to $1/2$ with a ground state. In this paper, we optimally improve both the locality and the fidelity parameter: we show that the BQP-completeness persists even with 2-local Hamiltonians, and even when the guiding state has fidelity (inverse-polynomially) close to 1 with a ground state. Moreover, we show that the BQP-completeness also holds for 2-local physically motivated Hamiltonians on a 2D square lattice or a 2D triangular lattice. Beyond the hardness of estimating the ground state energy, we also show BQP-hardness persists when considering estimating energies of excited states of these Hamiltonians instead. Those make further steps towards establishing practical quantum advantage in quantum chemistry.
Recent work on implicit neural representations (INRs) has evidenced their potential for efficiently representing and encoding conventional video content. In this paper we, for the first time, extend their application to immersive (multi-view) videos, by proposing MV-HiNeRV, a new INR-based immersive video codec. MV-HiNeRV is an enhanced version of a state-of-the-art INR-based video codec, HiNeRV, which was developed for single-view video compression. We have modified the model to learn a different group of feature grids for each view, and share the learnt network parameters among all views. This enables the model to effectively exploit the spatio-temporal and the inter-view redundancy that exists within multi-view videos. The proposed codec was used to compress multi-view texture and depth video sequences in the MPEG Immersive Video (MIV) Common Test Conditions, and tested against the MIV Test model (TMIV) that uses the VVenC video codec. The results demonstrate the superior performance of MV-HiNeRV, with significant coding gains (up to 72.33%) over TMIV. The implementation of MV-HiNeRV will be published for further development and evaluation.
Understanding the importance of the inputs on the output is useful across many tasks. This work provides an information-theoretic framework to analyse the influence of inputs for text classification tasks. Natural language processing (NLP) tasks take either a single element input or multiple element inputs to predict an output variable, where an element is a block of text. Each text element has two components: an associated semantic meaning and a linguistic realization. Multiple-choice reading comprehension (MCRC) and sentiment classification (SC) are selected to showcase the framework. For MCRC, it is found that the context influence on the output compared to the question influence reduces on more challenging datasets. In particular, more challenging contexts allow a greater variation in complexity of questions. Hence, test creators need to carefully consider the choice of the context when designing multiple-choice questions for assessment. For SC, it is found the semantic meaning of the input text dominates (above 80\% for all datasets considered) compared to its linguistic realisation when determining the sentiment. The framework is made available at: //github.com/WangLuran/nlp-element-influence
In recent years, graph neural networks (GNNs) have become a popular tool to improve the accuracy and performance of recommender systems. Modern recommender systems are not only designed to serve the end users, but also to benefit other participants, such as items and items providers. These participants may have different or conflicting goals and interests, which raise the need for fairness and popularity bias considerations. GNN-based recommendation methods also face the challenges of unfairness and popularity bias and their normalization and aggregation processes suffer from these challenges. In this paper, we propose a fair GNN-based recommender system, called HetroFair, to improve items' side fairness. HetroFair uses two separate components to generate fairness-aware embeddings: i) fairness-aware attention which incorporates dot product in the normalization process of GNNs, to decrease the effect of nodes' degrees, and ii) heterophily feature weighting to assign distinct weights to different features during the aggregation process. In order to evaluate the effectiveness of HetroFair, we conduct extensive experiments over six real-world datasets. Our experimental results reveal that HetroFair not only alleviates the unfairness and popularity bias on the items' side, but also achieves superior accuracy on the users' side. Our implementation is publicly available at //github.com/NematGH/HetroFair
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.
Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.