亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To evaluate a classification algorithm, it is common practice to plot the ROC curve using test data. However, the inherent randomness in the test data can undermine our confidence in the conclusions drawn from the ROC curve, necessitating uncertainty quantification. In this article, we propose an algorithm to construct confidence bands for the ROC curve, quantifying the uncertainty of classification on the test data in terms of sensitivity and specificity. The algorithm is based on a procedure called conformal prediction, which constructs individualized confidence intervals for the test set and the confidence bands for the ROC curve can be obtained by combining the individualized intervals together. Furthermore, we address both scenarios where the test data are either iid or non-iid relative to the observed data set and propose distinct algorithms for each case with valid coverage probability. The proposed method is validated through both theoretical results and numerical experiments.

相關內容

Longitudinal or panel data can be represented as a matrix with rows indexed by units and columns indexed by time. We consider inferential questions associated with the missing data version of panel data induced by staggered adoption. We propose a computationally efficient procedure for estimation, involving only simple matrix algebra and singular value decomposition, and prove non-asymptotic and high-probability bounds on its error in estimating each missing entry. By controlling proximity to a suitably scaled Gaussian variable, we develop and analyze a data-driven procedure for constructing entrywise confidence intervals with pre-specified coverage. Despite its simplicity, our procedure turns out to be instance-optimal: we prove that the width of our confidence intervals match a non-asymptotic instance-wise lower bound derived via a Bayesian Cram\'{e}r-Rao argument. We illustrate the sharpness of our theoretical characterization on a variety of numerical examples. Our analysis is based on a general inferential toolbox for SVD-based algorithm applied to the matrix denoising model, which might be of independent interest.

Mathematical verfier achieves success in mathematical reasoning tasks by validating the correctness of solutions. However, existing verifiers are trained with binary classification labels, which are not informative enough for the model to accurately assess the solutions. To mitigate the aforementioned insufficiency of binary labels, we introduce step-wise natural language feedbacks as rationale labels (i.e., the correctness of the current step and the explanations). In this paper, we propose \textbf{Math-Minos}, a natural language feedback enhanced verifier by constructing automatically-generated training data and a two-stage training paradigm for effective training and efficient inference. Our experiments reveal that a small set (30k) of natural language feedbacks can significantly boost the performance of the verifier by the accuracy of 1.6\% (86.6\% $\rightarrow$ 88.2\%) on GSM8K and 0.8\% (37.8\% $\rightarrow$ 38.6\%) on MATH. We have released our code and data for further exploration.

Recently, the use of circle representation has emerged as a method to improve the identification of spherical objects (such as glomeruli, cells, and nuclei) in medical imaging studies. In traditional bounding box-based object detection, combining results from multiple models improves accuracy, especially when real-time processing isn't crucial. Unfortunately, this widely adopted strategy is not readily available for combining circle representations. In this paper, we propose Weighted Circle Fusion (WCF), a simple approach for merging predictions from various circle detection models. Our method leverages confidence scores associated with each proposed bounding circle to generate averaged circles. Our method undergoes thorough evaluation on a proprietary dataset for glomerular detection in object detection within whole slide imaging (WSI). The findings reveal a performance gain of 5 %, respectively, compared to existing ensemble methods. Furthermore, the Weighted Circle Fusion technique not only improves the precision of object detection in medical images but also notably decreases false detections, presenting a promising direction for future research and application in pathological image analysis.

Link prediction is a common task on graph-structured data that has seen applications in a variety of domains. Classically, hand-crafted heuristics were used for this task. Heuristic measures are chosen such that they correlate well with the underlying factors related to link formation. In recent years, a new class of methods has emerged that combines the advantages of message-passing neural networks (MPNN) and heuristics methods. These methods perform predictions by using the output of an MPNN in conjunction with a "pairwise encoding" that captures the relationship between nodes in the candidate link. They have been shown to achieve strong performance on numerous datasets. However, current pairwise encodings often contain a strong inductive bias, using the same underlying factors to classify all links. This limits the ability of existing methods to learn how to properly classify a variety of different links that may form from different factors. To address this limitation, we propose a new method, LPFormer, which attempts to adaptively learn the pairwise encodings for each link. LPFormer models the link factors via an attention module that learns the pairwise encoding that exists between nodes by modeling multiple factors integral to link prediction. Extensive experiments demonstrate that LPFormer can achieve SOTA performance on numerous datasets while maintaining efficiency. The code is available at The code is available at //github.com/HarryShomer/LPFormer.

Optimizing black-box functions is a fundamental problem in science and engineering. To solve this problem, many approaches learn a surrogate function that estimates the underlying objective from limited historical evaluations. Large Language Models (LLMs), with their strong pattern-matching capabilities via pretraining on vast amounts of data, stand out as a potential candidate for surrogate modeling. However, directly prompting a pretrained language model to produce predictions is not feasible in many scientific domains due to the scarcity of domain-specific data in the pretraining corpora and the challenges of articulating complex problems in natural language. In this work, we introduce LICO, a general-purpose model that extends arbitrary base LLMs for black-box optimization, with a particular application to the molecular domain. To achieve this, we equip the language model with a separate embedding layer and prediction layer, and train the model to perform in-context predictions on a diverse set of functions defined over the domain. Once trained, LICO can generalize to unseen molecule properties simply via in-context prompting. LICO achieves state-of-the-art performance on PMO, a challenging molecular optimization benchmark comprising over 20 objective functions.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.

This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

北京阿比特科技有限公司