Recent supervised models for event coding vastly outperform pattern-matching methods. However, their reliance solely on new annotations disregards the vast knowledge within expert databases, hindering their applicability to fine-grained classification. To address these limitations, we explore zero-shot approaches for political event ontology relation classification, by leveraging knowledge from established annotation codebooks. Our study encompasses both ChatGPT and a novel natural language inference (NLI) based approach named ZSP. ZSP adopts a tree-query framework that deconstructs the task into context, modality, and class disambiguation levels. This framework improves interpretability, efficiency, and adaptability to schema changes. By conducting extensive experiments on our newly curated datasets, we pinpoint the instability issues within ChatGPT and highlight the superior performance of ZSP. ZSP achieves an impressive 40% improvement in F1 score for fine-grained Rootcode classification. ZSP demonstrates competitive performance compared to supervised BERT models, positioning it as a valuable tool for event record validation and ontology development. Our work underscores the potential of leveraging transfer learning and existing expertise to enhance the efficiency and scalability of research in the field.
Explainability of Deep Neural Networks (DNNs) has been garnering increasing attention in recent years. Of the various explainability approaches, concept-based techniques stand out for their ability to utilize human-meaningful concepts instead of focusing solely on individual pixels. However, there is a scarcity of methods that consistently provide both local and global explanations. Moreover, most of the methods have no offer to explain misclassification cases. Considering these challenges, we present a unified concept-based system for unsupervised learning of both local and global concepts. Our primary objective is to uncover the intrinsic concepts underlying each data category by training surrogate explainer networks to estimate the importance of the concepts. Our experimental results substantiated the efficacy of the discovered concepts through diverse quantitative and qualitative assessments, encompassing faithfulness, completeness, and generality. Furthermore, our approach facilitates the explanation of both accurate and erroneous predictions, rendering it a valuable tool for comprehending the characteristics of the target objects and classes.
Many pre-trained large-scale models provided online have become highly effective in transferring to downstream tasks. At the same time, various task-specific models fine-tuned on these pre-trained models are available online for public use. In practice, as collecting task-specific data is labor-intensive and fine-tuning the large pre-trained models is computationally expensive, one can reuse task-specific finetuned models to deal with downstream tasks. However, using a model per task causes a heavy burden on storage and serving. Recently, many training-free and parameter-efficient methods have been proposed for reusing multiple fine-tuned task-specific models into a single multi-task model. However, these methods exhibit a large accuracy gap compared with using a fine-tuned model per task. In this paper, we propose Parameter-Efficient methods for ReUsing (PERU) fine-tuned models. For reusing Fully Fine-Tuned (FFT) models, we propose PERU-FFT by injecting a sparse task vector into a merged model by magnitude pruning. For reusing LoRA fine-tuned models, we propose PERU-LoRA use a lower-rank matrix to approximate the LoRA matrix by singular value decomposition. Both PERUFFT and PERU-LoRA are training-free. Extensive experiments conducted on computer vision and natural language process tasks demonstrate the effectiveness and parameter-efficiency of the proposed methods. The proposed PERU-FFT and PERU-LoRA outperform existing reusing model methods by a large margin and achieve comparable performance to using a fine-tuned model per task.
Cell-free massive multiple-input multiple-output (mMIMO) and extremely large-scale MIMO (XL-MIMO) are regarded as promising innovations for the forthcoming generation of wireless communication systems. Their significant advantages in augmenting the number of degrees of freedom have garnered considerable interest. In this article, we first review the essential opportunities and challenges induced by XL-MIMO systems. We then propose the enhanced paradigm of cell-free XL-MIMO, which incorporates multi-agent reinforcement learning (MARL) to provide a distributed strategy for tackling the problem of high-dimension signal processing and costly energy consumption. Based on the unique near-field characteristics, we propose two categories of the low-complexity design, i.e., antenna selection and power control, to adapt to different cell-free XL-MIMO scenarios and achieve the maximum data rate. For inspiration, several critical future research directions pertaining to green cell-free XL-MIMO systems are presented.
In Ultrasound Localization Microscopy (ULM), achieving high-resolution images relies on the precise localization of contrast agent particles across consecutive beamformed frames. However, our study uncovers an enormous potential: The process of delay-and-sum beamforming leads to an irreversible reduction of Radio-Frequency (RF) data, while its implications for localization remain largely unexplored. The rich contextual information embedded within RF wavefronts, including their hyperbolic shape and phase, offers great promise for guiding Deep Neural Networks (DNNs) in challenging localization scenarios. To fully exploit this data, we propose to directly localize scatterers in RF signals. Our approach involves a custom super-resolution DNN using learned feature channel shuffling and a novel semi-global convolutional sampling block tailored for reliable and accurate localization in RF input data. Additionally, we introduce a geometric point transformation that facilitates seamless mapping between B-mode and RF spaces. To validate the effectiveness of our method and understand the impact of beamforming, we conduct an extensive comparison with State-Of-The-Art (SOTA) techniques in ULM. We present the inaugural in vivo results from an RF-trained DNN, highlighting its real-world practicality. Our findings show that RF-ULM bridges the domain gap between synthetic and real datasets, offering a considerable advantage in terms of precision and complexity. To enable the broader research community to benefit from our findings, our code and the associated SOTA methods are made available at //github.com/hahnec/rf-ulm.
Digital image forensics plays a crucial role in image authentication and manipulation localization. Despite the progress powered by deep neural networks, existing forgery localization methodologies exhibit limitations when deployed to unseen datasets and perturbed images (i.e., lack of generalization and robustness to real-world applications). To circumvent these problems and aid image integrity, this paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts. The rationale is grounded on the observation that most image signal processors (ISP) involve the demosaicing process, which introduces pixel correlations in pristine images. Moreover, manipulating operations, including splicing, copy-move, and inpainting, directly affect such pixel regularity. We, therefore, first split the input image into several blocks and design masked self-attention mechanisms to model the global pixel dependency in input images. Simultaneously, we optimize another local pixel dependency stream to mine local manipulation clues within input forgery images. In addition, we design novel Learning-to-Weight Modules (LWM) to combine features from the two streams, thereby enhancing the final forgery localization performance. To improve the training process, we propose a novel Pixel-Inconsistency Data Augmentation (PIDA) strategy, driving the model to focus on capturing inherent pixel-level artifacts instead of mining semantic forgery traces. This work establishes a comprehensive benchmark integrating 15 representative detection models across 12 datasets. Extensive experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints and achieve state-of-the-art generalization and robustness performances in image manipulation localization.
Control barrier functions (CBFs) provide a simple yet effective way for safe control synthesis. Recently, work has been done using differentiable optimization based methods to systematically construct CBFs for static obstacle avoidance tasks between geometric shapes. In this work, we extend the application of differentiable optimization based CBFs to perform dynamic obstacle avoidance tasks. We show that by using the time-varying CBF (TVCBF) formulation, we can perform obstacle avoidance for dynamic geometric obstacles. Additionally, we show how to alter the TVCBF constraint to consider measurement noise and actuation limits. To demonstrate the efficacy of our proposed approach, we first compare its performance with a model predictive control based method on a simulated dynamic obstacle avoidance task with non-ellipsoidal obstacles. Then, we demonstrate the performance of our proposed approach in experimental studies using a 7-degree-of-freedom Franka Research 3 robotic manipulator.
Learning-based multi-view stereo (MVS) method heavily relies on feature matching, which requires distinctive and descriptive representations. An effective solution is to apply non-local feature aggregation, e.g., Transformer. Albeit useful, these techniques introduce heavy computation overheads for MVS. Each pixel densely attends to the whole image. In contrast, we propose to constrain non-local feature augmentation within a pair of lines: each point only attends the corresponding pair of epipolar lines. Our idea takes inspiration from the classic epipolar geometry, which shows that one point with different depth hypotheses will be projected to the epipolar line on the other view. This constraint reduces the 2D search space into the epipolar line in stereo matching. Similarly, this suggests that the matching of MVS is to distinguish a series of points lying on the same line. Inspired by this point-to-line search, we devise a line-to-point non-local augmentation strategy. We first devise an optimized searching algorithm to split the 2D feature maps into epipolar line pairs. Then, an Epipolar Transformer (ET) performs non-local feature augmentation among epipolar line pairs. We incorporate the ET into a learning-based MVS baseline, named ET-MVSNet. ET-MVSNet achieves state-of-the-art reconstruction performance on both the DTU and Tanks-and-Temples benchmark with high efficiency. Code is available at //github.com/TQTQliu/ET-MVSNet.
We propose a neuralized undirected graphical model called Neural-Hidden-CRF to solve the weakly-supervised sequence labeling problem. Under the umbrella of probabilistic undirected graph theory, the proposed Neural-Hidden-CRF embedded with a hidden CRF layer models the variables of word sequence, latent ground truth sequence, and weak label sequence with the global perspective that undirected graphical models particularly enjoy. In Neural-Hidden-CRF, we can capitalize on the powerful language model BERT or other deep models to provide rich contextual semantic knowledge to the latent ground truth sequence, and use the hidden CRF layer to capture the internal label dependencies. Neural-Hidden-CRF is conceptually simple and empirically powerful. It obtains new state-of-the-art results on one crowdsourcing benchmark and three weak-supervision benchmarks, including outperforming the recent advanced model CHMM by 2.80 F1 points and 2.23 F1 points in average generalization and inference performance, respectively.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.