亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Longest common subsequence ($\mathsf{LCS}$) is a classic and central problem in combinatorial optimization. While $\mathsf{LCS}$ admits a quadratic time solution, recent evidence suggests that solving the problem may be impossible in truly subquadratic time. A special case of $\mathsf{LCS}$ wherein each character appears at most once in every string is equivalent to the longest increasing subsequence problem ($\mathsf{LIS}$) which can be solved in quasilinear time. In this work, we present novel algorithms for approximating $\mathsf{LCS}$ in truly subquadratic time and $\mathsf{LIS}$ in truly sublinear time. Our approximation factors depend on the ratio of the optimal solution size over the input size. We denote this ratio by $\lambda$ and obtain the following results for $\mathsf{LCS}$ and $\mathsf{LIS}$ without any prior knowledge of $\lambda$. $\bullet$ A truly subquadratic time algorithm for $\mathsf{LCS}$ with approximation factor $\Omega(\lambda^3)$. $\bullet$A truly sublinear time algorithm for $\mathsf{LIS}$ with approximation factor $\Omega(\lambda^3)$. Triangle inequality was recently used by [Boroujeni, Ehsani, Ghodsi, HajiAghayi and Seddighin SODA 2018] and [Charkraborty, Das, Goldenberg, Koucky and Saks FOCS 2018] to present new approximation algorithms for edit distance. Our techniques for $\mathsf{LCS}$ extend the notion of triangle inequality to non-metric settings.

相關內容

We propose the homotopic policy mirror descent (HPMD) method for solving discounted, infinite horizon MDPs with finite state and action space, and study its policy convergence. We report three properties that seem to be new in the literature of policy gradient methods: (1) The policy first converges linearly, then superlinearly with order $\gamma^{-2}$ to the set of optimal policies, after $\mathcal{O}(\log(1/\Delta^*))$ number of iterations, where $\Delta^*$ is defined via a gap quantity associated with the optimal state-action value function; (2) HPMD also exhibits last-iterate convergence, with the limiting policy corresponding exactly to the optimal policy with the maximal entropy for every state. No regularization is added to the optimization objective and hence the second observation arises solely as an algorithmic property of the homotopic policy gradient method. (3) For the stochastic HPMD method, we further demonstrate a better than $\mathcal{O}(|\mathcal{S}| |\mathcal{A}| / \epsilon^2)$ sample complexity for small optimality gap $\epsilon$, when assuming a generative model for policy evaluation.

Stochastic gradient descent ascent (SGDA) and its variants have been the workhorse for solving minimax problems. However, in contrast to the well-studied stochastic gradient descent (SGD) with differential privacy (DP) constraints, there is little work on understanding the generalization (utility) of SGDA with DP constraints. In this paper, we use the algorithmic stability approach to establish the generalization (utility) of DP-SGDA in different settings. In particular, for the convex-concave setting, we prove that the DP-SGDA can achieve an optimal utility rate in terms of the weak primal-dual population risk in both smooth and non-smooth cases. To our best knowledge, this is the first-ever-known result for DP-SGDA in the non-smooth case. We further provide its utility analysis in the nonconvex-strongly-concave setting which is the first-ever-known result in terms of the primal population risk. The convergence and generalization results for this nonconvex setting are new even in the non-private setting. Finally, numerical experiments are conducted to demonstrate the effectiveness of DP-SGDA for both convex and nonconvex cases.

Let $P$ be a polyhedron, defined by a system $A x \leq b$, where $A \in Z^{m \times n}$, $rank(A) = n$, and $b \in Z^{m}$. In the Integer Feasibility Problem, we need to decide whether $P \cap Z^n = \emptyset$ or to find some $x \in P \cap Z^n$ in the opposite case. Currently, its state of the art algorithm, due to \cite{DadushDis,DadushFDim} (see also \cite{Convic,ConvicComp,DConvic} for more general formulations), has the complexity bound $O(n)^n \cdot poly(\phi)$, where $\phi = size(A,b)$. It is a long-standing open problem to break the $O(n)^n$ dimension-dependence in the complexity of ILP algorithms. We show that if the matrix $A$ has a small $l_1$ or $l_\infty$ norm, or $A$ is sparse and has bounded elements, then the integer feasibility problem can be solved faster. More precisely, we give the following complexity bounds \begin{gather*} \min\{\|A\|_{\infty}, \|A\|_1\}^{5 n} \cdot 2^n \cdot poly(\phi), \bigl( \|A\|_{\max} \bigr)^{5 n} \cdot \min\{cs(A),rs(A)\}^{3 n} \cdot 2^n \cdot poly(\phi). \end{gather*} Here $\|A\|_{\max}$ denotes the maximal absolute value of elements of $A$, $cs(A)$ and $rs(A)$ denote the maximal number of nonzero elements in columns and rows of $A$, respectively. We present similar results for the integer linear counting and optimization problems. Additionally, we apply the last result for multipacking and multicover problems on graphs and hypergraphs, where we need to choose a minimal/maximal multiset of vertices to cover/pack the edges by a prescribed number of times. For example, we show that the stable multiset and vertex multicover problems on simple graphs admit FPT-algorithms with the complexity bound $2^{O(|V|)} \cdot poly(\phi)$, where $V$ is the vertex set of a given graph.

Finding a \emph{single} best solution is the most common objective in combinatorial optimization problems. However, such a single solution may not be applicable to real-world problems as objective functions and constraints are only "approximately" formulated for original real-world problems. To solve this issue, finding \emph{multiple} solutions is a natural direction, and diversity of solutions is an important concept in this context. Unfortunately, finding diverse solutions is much harder than finding a single solution. To cope with difficulty, we investigate the approximability of finding diverse solutions. As a main result, we propose a framework to design approximation algorithms for finding diverse solutions, which yields several outcomes including constant-factor approximation algorithms for finding diverse matchings in graphs and diverse common bases in two matroids and PTASes for finding diverse minimum cuts and interval schedulings.

\emph{$K$-best enumeration}, which asks to output $k$ best solutions without duplication, plays an important role in data analysis for many fields. In such fields, data can be typically represented by graphs, and thus subgraph enumeration has been paid much attention to. However, $k$-best enumeration tends to be intractable since, in many cases, finding one optimum solution is \NP-hard. To overcome this difficulty, we combine $k$-best enumeration with a new concept of enumeration algorithms called \emph{approximation enumeration algorithms}, which has been recently proposed. As a main result, we propose an $\alpha$-approximation algorithm for minimal connected edge dominating sets which outputs $k$ minimal solutions with cardinality at most $\alpha\cdot\overline{\rm OPT}$, where $\overline{\rm OPT}$ is the cardinality of a mini\emph{mum} solution which is \emph{not} outputted by the algorithm, and $\alpha$ is constant. Moreover, our proposed algorithm runs in $O(nm^2\Delta)$ delay, where $n$, $m$, $\Delta$ are the number of vertices, the number of edges, and the maximum degree of an input graph.

We establish in this work approximation results of deep neural networks for smooth functions measured in Sobolev norms, motivated by recent development of numerical solvers for partial differential equations using deep neural networks. {Our approximation results are nonasymptotic in the sense that the error bounds are explicitly characterized in terms of both the width and depth of the networks simultaneously with all involved constants explicitly determined.} Namely, for $f\in C^s([0,1]^d)$, we show that deep ReLU networks of width $\mathcal{O}(N\log{N})$ and of depth $\mathcal{O}(L\log{L})$ can achieve a nonasymptotic approximation rate of $\mathcal{O}(N^{-2(s-1)/d}L^{-2(s-1)/d})$ with respect to the $\mathcal{W}^{1,p}([0,1]^d)$ norm for $p\in[1,\infty)$. If either the ReLU function or its square is applied as activation functions to construct deep neural networks of width $\mathcal{O}(N\log{N})$ and of depth $\mathcal{O}(L\log{L})$ to approximate $f\in C^s([0,1]^d)$, the approximation rate is $\mathcal{O}(N^{-2(s-n)/d}L^{-2(s-n)/d})$ with respect to the $\mathcal{W}^{n,p}([0,1]^d)$ norm for $p\in[1,\infty)$. An extension of similar approximation results is also provided for target functions in the H\"{o}lder space.

We study population protocols, a model of distributed computing appropriate for modeling well-mixed chemical reaction networks and other physical systems where agents exchange information in pairwise interactions, but have no control over their schedule of interaction partners. The well-studied *majority* problem is that of determining in an initial population of $n$ agents, each with one of two opinions $A$ or $B$, whether there are more $A$, more $B$, or a tie. A *stable* protocol solves this problem with probability 1 by eventually entering a configuration in which all agents agree on a correct consensus decision of $\mathsf{A}$, $\mathsf{B}$, or $\mathsf{T}$, from which the consensus cannot change. We describe a protocol that solves this problem using $O(\log n)$ states ($\log \log n + O(1)$ bits of memory) and optimal expected time $O(\log n)$. The number of states $O(\log n)$ is known to be optimal for the class of polylogarithmic time stable protocols that are "output dominant" and "monotone". These are two natural constraints satisfied by our protocol, making it simultaneously time- and state-optimal for that class. We introduce a key technique called a "fixed resolution clock" to achieve partial synchronization. Our protocol is *nonuniform*: the transition function has the value $\left \lceil {\log n} \right \rceil$ encoded in it. We show that the protocol can be modified to be uniform, while increasing the state complexity to $\Theta(\log n \log \log n)$.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司