Soft pneumatic actuators have a wide range of applications, including providing haptic feedback embedded in smart garments. Here we investigate actuators fabricated from thermoplastic coated textiles. We measure the effects of fabrication parameters on the robustness and airtightness of small, round pneumatic pouch actuators made from heat-sealed thermoplastic polyurethane-coated nylon, which we call PneuDots. We determine the optimal temperature, time, and pressure for heat-pressing of the textile to create strong bonds and identify the most effective glue to create an airtight seal at the inlet. Compared to elastomeric pneumatic actuators, PneuDots reduce the thickness of the actuator by 96.4% and the mass by 57.2%, increasing their wearability while maintaining a strong force output. We evaluated the force output of the actuators, along with their performance over time. In a blocked force test, PneuDot maximum force transmission was 36.1N, which is 95.3% of the peak force output of an elastomeric pneumatic actuator with the same diameter and pressure. Cyclical testing showed that PneuDots had more stable behavior over time. These results provide best practices for fabrication and indicate the feasibility of textile pneumatic actuators for future wearable applications.
The freshness of sensor data is critical for all types of cyber-physical systems. An established measure for quantifying data freshness is the Age-of-Information (AoI), which has been the subject of extensive research. Recently, there has been increased interest in multi-sensor systems: redundant sensors producing samples of the same physical process, sensors such as cameras producing overlapping views, or distributed sensors producing correlated samples. When the information from a particular sensor is outdated, fresh samples from other correlated sensors can be helpful. To quantify the utility of distant but correlated samples, we put forth a two-dimensional (2D) model of AoI that takes into account the sensor distance in an age-equivalent representation. Since we define 2D-AoI as equivalent to AoI, it can be readily linked to existing AoI research, especially on parallel systems. We consider physical phenomena modeled as spatio-temporal processes and derive the 2D-AoI for different Gaussian correlation kernels. For a basic exponential product kernel, we find that spatial distance causes an additive offset of the AoI, while for other kernels the effects of spatial distance are more complex and vary with time. Using our methodology, we evaluate the 2D-AoI of different spatial topologies and sensor densities.
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics. Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs, while still struggling with inherent ambiguities between lighting and material. On the other hand, learning-based approaches leverage rich material priors from existing 3D object datasets but face challenges with maintaining multi-view consistency. In this paper, we introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations. Our method achieves accurate and multi-view consistent estimation on surface normals and material properties. This is made possible through a novel cross-view, cross-domain attention module and an illumination-augmented, view-adaptive training strategy. Additionally, we introduce ARB-Objaverse, a new dataset that provides large-scale multi-view intrinsic data and renderings under diverse lighting conditions, supporting robust training. Extensive experiments demonstrate that IDArb outperforms state-of-the-art methods both qualitatively and quantitatively. Moreover, our approach facilitates a range of downstream tasks, including single-image relighting, photometric stereo, and 3D reconstruction, highlighting its broad applications in realistic 3D content creation.
Transformer models encounter challenges in scaling hidden dimensions efficiently, as uniformly increasing them inflates computational and memory costs while failing to emphasize the most relevant features for each token. For further understanding, we study hidden dimension sparsity and observe that trained Transformers utilize only a small fraction of token dimensions, revealing an "activation flow" pattern. Notably, there are shared sub-dimensions with sustained activation across multiple consecutive tokens and specialized sub-dimensions uniquely activated for each token. To better model token-relevant sub-dimensions, we propose MoHD (Mixture of Hidden Dimensions), a sparse conditional activation architecture. Particularly, MoHD employs shared sub-dimensions for common token features and a routing mechanism to dynamically activate specialized sub-dimensions. To mitigate potential information loss from sparsity, we design activation scaling and group fusion mechanisms to preserve activation flow. In this way, MoHD expands hidden dimensions with negligible increases in computation or parameters, efficient training and inference while maintaining performance. Evaluations across 10 NLP tasks show that MoHD surpasses Vanilla Transformers in parameter efficiency and task performance. It achieves 1.7% higher performance with 50% fewer activation parameters and 3.7% higher performance with a 3x parameter expansion at constant activation cost. MOHD offers a new perspective for scaling the model, showcasing the potential of hidden dimension sparsity to boost efficiency
In fact-checking, structure and phrasing of claims critically influence a model's ability to predict verdicts accurately. Social media content in particular rarely serves as optimal input for verification systems, which necessitates pre-processing to extract the claim from noisy context before fact checking. Prior work suggests extracting a claim representation that humans find to be checkworthy and verifiable. This has two limitations: (1) the format may not be optimal for a fact-checking model, and (2), it requires annotated data to learn the extraction task from. We address both issues and propose a method to extract claims that is not reliant on labeled training data. Instead, our self-adaptive approach only requires a black-box fact checking model and a generative language model (LM). Given a tweet, we iteratively optimize the LM to generate a claim paraphrase that increases the performance of a fact checking model. By learning from preference pairs, we align the LM to the fact checker using direct preference optimization. We show that this novel setup extracts a claim paraphrase that is more verifiable than their original social media formulations, and is on par with competitive baselines. For refuted claims, our method consistently outperforms all baselines.
Federated learning is highly susceptible to model poisoning attacks, especially those meticulously crafted for servers. Traditional defense methods mainly focus on updating assessments or robust aggregation against manually crafted myopic attacks. When facing advanced attacks, their defense stability is notably insufficient. Therefore, it is imperative to develop adaptive defenses against such advanced poisoning attacks. We find that benign clients exhibit significantly higher data distribution stability than malicious clients in federated learning in both CV and NLP tasks. Therefore, the malicious clients can be recognized by observing the stability of their data distribution. In this paper, we propose AdaAggRL, an RL-based Adaptive Aggregation method, to defend against sophisticated poisoning attacks. Specifically, we first utilize distribution learning to simulate the clients' data distributions. Then, we use the maximum mean discrepancy (MMD) to calculate the pairwise similarity of the current local model data distribution, its historical data distribution, and global model data distribution. Finally, we use policy learning to adaptively determine the aggregation weights based on the above similarities. Experiments on four real-world datasets demonstrate that the proposed defense model significantly outperforms widely adopted defense models for sophisticated attacks.
Machine learning for node classification on graphs is a prominent area driven by applications such as recommendation systems. State-of-the-art models often use multiple graph convolutions on the data, as empirical evidence suggests they can enhance performance. However, it has been shown empirically and theoretically, that too many graph convolutions can degrade performance significantly, a phenomenon known as oversmoothing. In this paper, we provide a rigorous theoretical analysis, based on the two-class contextual stochastic block model (CSBM), of the performance of vanilla graph convolution from which we remove the principal eigenvector to avoid oversmoothing. We perform a spectral analysis for $k$ rounds of corrected graph convolutions, and we provide results for partial and exact classification. For partial classification, we show that each round of convolution can reduce the misclassification error exponentially up to a saturation level, after which performance does not worsen. We also extend this analysis to the multi-class setting with features distributed according to a Gaussian mixture model. For exact classification, we show that the separability threshold can be improved exponentially up to $O({\log{n}}/{\log\log{n}})$ corrected convolutions.
A brain-computer interface (BCI) establishes a direct communication pathway between the brain and an external device. Electroencephalogram (EEG) is the most popular input signal in BCIs, due to its convenience and low cost. Most research on EEG-based BCIs focuses on the accurate decoding of EEG signals; however, EEG signals also contain rich private information, e.g., user identity, emotion, and so on, which should be protected. This paper first exposes a serious privacy problem in EEG-based BCIs, i.e., the user identity in EEG data can be easily learned so that different sessions of EEG data from the same user can be associated together to more reliably mine private information. To address this issue, we further propose two approaches to convert the original EEG data into identity-unlearnable EEG data, i.e., removing the user identity information while maintaining the good performance on the primary BCI task. Experiments on seven EEG datasets from five different BCI paradigms showed that on average the generated identity-unlearnable EEG data can reduce the user identification accuracy from 70.01\% to at most 21.36\%, greatly facilitating user privacy protection in EEG-based BCIs.
We employ a toolset -- dubbed Dr. Frankenstein -- to analyse the similarity of representations in deep neural networks. With this toolset, we aim to match the activations on given layers of two trained neural networks by joining them with a stitching layer. We demonstrate that the inner representations emerging in deep convolutional neural networks with the same architecture but different initializations can be matched with a surprisingly high degree of accuracy even with a single, affine stitching layer. We choose the stitching layer from several possible classes of linear transformations and investigate their performance and properties. The task of matching representations is closely related to notions of similarity. Using this toolset, we also provide a novel viewpoint on the current line of research regarding similarity indices of neural network representations: the perspective of the performance on a task.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.