亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent times, with the exception of sporadic cases, the trend in Computer Vision is to achieve minor improvements compared to considerable increases in complexity. To reverse this trend, we propose a novel method to boost image classification performances without increasing complexity. To this end, we revisited ensembling, a powerful approach, often not used properly due to its more complex nature and the training time, so as to make it feasible through a specific design choice. First, we trained two EfficientNet-b0 end-to-end models (known to be the architecture with the best overall accuracy/complexity trade-off for image classification) on disjoint subsets of data (i.e. bagging). Then, we made an efficient adaptive ensemble by performing fine-tuning of a trainable combination layer. In this way, we were able to outperform the state-of-the-art by an average of 0.5$\%$ on the accuracy, with restrained complexity both in terms of the number of parameters (by 5-60 times), and the FLoating point Operations Per Second (FLOPS) by 10-100 times on several major benchmark datasets.

相關內容

圖像分類,顧名思義,是一個輸入圖像,輸出對該圖像內容分類的描述的問題。它是計算機視覺的核心,實際應用廣泛。

The field of Natural Language Generation (NLG) suffers from a severe shortage of labeled data due to the extremely expensive and time-consuming process involved in manual annotation. A natural approach for coping with this problem is active learning (AL), a well-known machine learning technique for improving annotation efficiency by selectively choosing the most informative examples to label. However, while AL has been well-researched in the context of text classification, its application to NLG remains largely unexplored. In this paper, we present a first systematic study of active learning for NLG, considering a diverse set of tasks and multiple leading selection strategies, and harnessing a strong instruction-tuned model. Our results indicate that the performance of existing AL strategies is inconsistent, surpassing the baseline of random example selection in some cases but not in others. We highlight some notable differences between the classification and generation scenarios, and analyze the selection behaviors of existing AL strategies. Our findings motivate exploring novel approaches for applying AL to generation tasks.

We propose SAMed, a general solution for medical image segmentation. Different from the previous methods, SAMed is built upon the large-scale image segmentation model, Segment Anything Model (SAM), to explore the new research paradigm of customizing large-scale models for medical image segmentation. SAMed applies the low-rank-based (LoRA) finetuning strategy to the SAM image encoder and finetunes it together with the prompt encoder and the mask decoder on labeled medical image segmentation datasets. We also observe the warmup finetuning strategy and the AdamW optimizer lead SAMed to successful convergence and lower loss. Different from SAM, SAMed could perform semantic segmentation on medical images. Our trained SAMed model achieves 81.88 DSC and 20.64 HD on the Synapse multi-organ segmentation dataset, which is on par with the state-of-the-art methods. We conduct extensive experiments to validate the effectiveness of our design. Since SAMed only updates a small fraction of the SAM parameters, its deployment cost and storage cost are quite marginal in practical usage. The code of SAMed is available at //github.com/hitachinsk/SAMed.

Calysto Scheme is written in Scheme in Continuation-Passing Style, and converted through a series of correctness-preserving program transformations into Python. It has support for standard Scheme functionality, including call/cc, as well as syntactic extensions, a nondeterministic operator for automatic backtracking, and many extensions to allow Python interoperation. Because of its Python foundation, it can take advantage of modern Python libraries, including those for machine learning and other pedagogical contexts. Although Calysto Scheme was developed with educational purposes in mind, it has proven to be generally useful due to its simplicity and ease of installation. It has been integrated into the Jupyter Notebook ecosystem and used in the classroom to teach introductory Programming Languages with some interesting and unique twists.

There is no doubt that the Moon has become the center of interest for commercial and international actors. Over the past decade, the number of planned long-term missions has increased dramatically. This makes the establishment of cislunar space networks (CSNs) crucial to orchestrate uninterrupted communications between the Moon and Earth. However, there are numerous challenges, unknowns, and uncertainties associated with cislunar communications that may pose various risks to lunar missions. In this study, we aim to address these challenges for cislunar communications by proposing a machine learning-based cislunar space domain awareness (SDA) capability that enables robust and secure communications. To this end, we first propose a detailed channel model for selected cislunar scenarios. Secondly, we propose two types of interference that could model anomalies that occur in cislunar space and are so far known only to a limited extent. Finally, we discuss our cislunar SDA to work in conjunction with the spacecraft communication system. Our proposed cislunar SDA, involving heuristic learning capabilities with machine learning algorithms, detects interference models with over 96% accuracy. The results demonstrate the promising performance of our cislunar SDA approach for secure and robust cislunar communication.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.

Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.

We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.

北京阿比特科技有限公司