亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Only the chairs can edit In the fight against cyber attacks, Network Softwarization (NS) is a flexible and adaptable shield, using advanced software to spot malicious activity in regular network traffic. However, the availability of comprehensive datasets for mobile networks, which are fundamental for the development of Machine Learning (ML) solutions for attack detection near their source, is still limited. Cross-Domain Artificial Intelligence (AI) can be the key to address this, although its application in Open Radio Access Network (O-RAN) is still at its infancy. To address these challenges, we deployed an end-to-end O-RAN network, that was used to collect data from the RAN and the transport network. These datasets allow us to combine the knowledge from an in-network ML traffic classifier for attack detection to bolster the training of an ML-based traffic classifier specifically tailored for the RAN. Our results demonstrate the potential of the proposed approach, achieving an accuracy rate of 93%. This approach not only bridges critical gaps in mobile network security but also showcases the potential of cross-domain AI in enhancing the efficacy of network security measures.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

The autonomous quadrotor's flying speed has kept increasing in the past 5 years, especially in the field of autonomous drone racing. However, the majority of the research mainly focuses on the aggressive flight of a single quadrotor. In this letter, we propose a novel method called Pairwise Model Predictive Control (PMPC) that can guide two quadrotors online to fly through the waypoints with minimum time without collisions. The flight task is first modeled as a nonlinear optimization problem and then an efficient two-step mass point velocity search method is used to provide initial values and references to improve the solving efficiency so that the method can run online with a frequency of 50 Hz and can handle dynamic waypoints. The simulation and real-world experiments validate the feasibility of the proposed method and in the real-world experiments, the two quadrotors can achieve a top speed of 8.1m/s in a 6-waypoint racing track in a compact flying arena of 6m*4m*2m.

Simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) is a cutting-edge concept for the sixth-generation (6G) wireless networks. In this letter, we propose a novel system that incorporates STAR-RIS with simultaneous wireless information and power transfer (SWIPT) using rate splitting multiple access (RSMA). The proposed system facilitates communication from a multi-antenna base station (BS) to single-antenna users in a downlink transmission. The BS concurrently sends energy and information signals to multiple energy harvesting receivers (EHRs) and information data receivers (IDRs) with the support of a deployed STAR-RIS. Furthermore, an optimization is introduced to strike a balance between users' sum rate and the total harvested energy. To achieve this, an optimization problem is formulated to optimize the energy/information beamforming vectors at the BS, the phase shifts at the STAR-RIS, and the common message rate. Subsequently, we employ a meta deep deterministic policy gradient (Meta-DDPG) approach to solve the complex problem. Simulation results validate that the proposed algorithm significantly enhances both data rate and harvested energy in comparison to conventional DDPG.

Automated Program Repair (APR) has evolved significantly with the advent of Large Language Models (LLMs). Fine-tuning LLMs for program repair is a recent avenue of research, with many dimensions which have not been explored. Existing work mostly fine-tunes LLMs with naive code representations and is fundamentally limited in its ability to fine-tune larger LLMs. To address this problem, we propose RepairLLaMA, a novel program repair approach that combines 1) code representations for APR and 2) the state-of-the-art parameter-efficient LLM fine-tuning technique called LoRA. This results in RepairLLaMA producing a highly effective `program repair adapter' for fixing bugs with language models. Our experiments demonstrate the validity of both concepts. First, fine-tuning adapters with program repair specific code representations enables the model to use meaningful repair signals. Second, parameter-efficient fine-tuning helps fine-tuning to converge and contributes to the effectiveness of the repair adapter to fix data-points outside the fine-tuning data distribution. Overall, RepairLLaMA correctly fixes 125 Defects4J v2 and 82 HumanEval-Java bugs, outperforming all baselines.

In recent RAG approaches, rerankers play a pivotal role in refining retrieval accuracy with the ability of revealing logical relations for each pair of query and text. However, existing rerankers are required to repeatedly encode the query and a large number of long retrieved text. This results in high computational costs and limits the number of retrieved text, hindering accuracy. As a remedy of the problem, we introduce the Efficient Title Reranker via Broadcasting Query Encoder, a novel technique for title reranking that achieves a 20x-40x speedup over the vanilla passage reranker. Furthermore, we introduce Sigmoid Trick, a novel loss function customized for title reranking. Combining both techniques, we empirically validated their effectiveness, achieving state-of-the-art results on all four datasets we experimented with from the KILT knowledge benchmark.

This paper explores the role of the Chain of Thought (CoT) in Large Language Models (LLMs) reasoning. Despite its potential to improve task performance, our analysis reveals a surprising frequency of correct answers following incorrect CoTs and vice versa. We employ causal analysis to assess the cause-effect relationship between CoTs/instructions and answers in LLMs, uncovering the Structural Causal Model (SCM) that LLMs approximate. By comparing the implied SCM with that of human reasoning, we highlight discrepancies between LLM and human reasoning processes. We further examine the factors influencing the causal structure of the implied SCM, revealing that in-context learning, supervised fine-tuning, and reinforcement learning on human feedback significantly impact the causal relations. We release the code and results at //github.com/StevenZHB/CoT_Causal_Analysis.

As a special infinite-order vector autoregressive (VAR) model, the vector autoregressive moving average (VARMA) model can capture much richer temporal patterns than the widely used finite-order VAR model. However, its practicality has long been hindered by its non-identifiability, computational intractability, and difficulty of interpretation, especially for high-dimensional time series. This paper proposes a novel sparse infinite-order VAR model for high-dimensional time series, which avoids all above drawbacks while inheriting essential temporal patterns of the VARMA model. As another attractive feature, the temporal and cross-sectional structures of the VARMA-type dynamics captured by this model can be interpreted separately, since they are characterized by different sets of parameters. This separation naturally motivates the sparsity assumption on the parameters determining the cross-sectional dependence. As a result, greater statistical efficiency and interpretability can be achieved with little loss of temporal information. We introduce two $\ell_1$-regularized estimation methods for the proposed model, which can be efficiently implemented via block coordinate descent algorithms, and derive the corresponding nonasymptotic error bounds. A consistent model order selection method based on the Bayesian information criteria is also developed. The merit of the proposed approach is supported by simulation studies and a real-world macroeconomic data analysis.

Punctuation restoration plays an essential role in the post-processing procedure of automatic speech recognition, but model efficiency is a key requirement for this task. To that end, we present EfficientPunct, an ensemble method with a multimodal time-delay neural network that outperforms the current best model by 1.0 F1 points, using less than a tenth of its inference network parameters. We streamline a speech recognizer to efficiently output hidden layer acoustic embeddings for punctuation restoration, as well as BERT to extract meaningful text embeddings. By using forced alignment and temporal convolutions, we eliminate the need for attention-based fusion, greatly increasing computational efficiency and raising performance. EfficientPunct sets a new state of the art with an ensemble that weights BERT's purely language-based predictions slightly more than the multimodal network's predictions. Our code is available at //github.com/lxy-peter/EfficientPunct.

Solar flare prediction studies have been recently conducted with the use of Space-Weather MDI (Michelson Doppler Imager onboard Solar and Heliospheric Observatory) Active Region Patches (SMARP) and Space-Weather HMI (Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory) Active Region Patches (SHARP), which are two currently available data products containing magnetic field characteristics of solar active regions. The present work is an effort to combine them into one data product, and perform some initial statistical analyses in order to further expand their application in space weather forecasting. The combined data are derived by filtering, rescaling, and merging the SMARP with SHARP parameters, which can then be spatially reduced to create uniform multivariate time series. The resulting combined MDI-HMI dataset currently spans the period between April 4, 1996, and December 13, 2022, and may be extended to a more recent date. This provides an opportunity to correlate and compare it with other space weather time series, such as the daily solar flare index or the statistical properties of the soft X-ray flux measured by the Geostationary Operational Environmental Satellites (GOES). Time-lagged cross-correlation indicates that a relationship may exist, where some magnetic field properties of active regions lead the flare index in time. Applying the rolling window technique makes it possible to see how this leader-follower dynamic varies with time. Preliminary results indicate that areas of high correlation generally correspond to increased flare activity during the peak solar cycle.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.

北京阿比特科技有限公司