亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent innovations from machine learning allow for data unfolding, without binning and including correlations across many dimensions. We describe a set of known, upgraded, and new methods for ML-based unfolding. The performance of these approaches are evaluated on the same two datasets. We find that all techniques are capable of accurately reproducing the particle-level spectra across complex observables. Given that these approaches are conceptually diverse, they offer an exciting toolkit for a new class of measurements that can probe the Standard Model with an unprecedented level of detail and may enable sensitivity to new phenomena.

相關內容

機器學習(Machine Learning)是一個研究計算學習方法的國際論壇。該雜志發表文章,報告廣泛的學習方法應用于各種學習問題的實質性結果。該雜志的特色論文描述研究的問題和方法,應用研究和研究方法的問題。有關學習問題或方法的論文通過實證研究、理論分析或與心理現象的比較提供了堅實的支持。應用論文展示了如何應用學習方法來解決重要的應用問題。研究方法論文改進了機器學習的研究方法。所有的論文都以其他研究人員可以驗證或復制的方式描述了支持證據。論文還詳細說明了學習的組成部分,并討論了關于知識表示和性能任務的假設。 官網地址:

Crossed random effects structures arise in many scientific contexts. They raise severe computational problems with likelihood computations scaling like $N^{3/2}$ or worse for $N$ data points. In this paper we develop a new composite likelihood approach for crossed random effects probit models. For data arranged in R rows and C columns, the likelihood function includes a very difficult R + C dimensional integral. The composite likelihood we develop uses the marginal distribution of the response along with two hierarchical models. The cost is reduced to $\mathcal{O}(N)$ and it can be computed with $R + C$ one dimensional integrals. We find that the commonly used Laplace approximation has a cost that grows superlinearly. We get consistent estimates of the probit slope and variance components from our composite likelihood algorithm. We also show how to estimate the covariance of the estimated regression coefficients. The algorithm scales readily to a data set of five million observations from Stitch Fix with $R + C > 700{,}000$.

Many classical problems in theoretical computer science involve norm, even if implicitly; for example, both XOS functions and downward-closed sets are equivalent to some norms. The last decade has seen a lot of interest in designing algorithms beyond the standard $\ell_p$ norms $\|\cdot \|_p$. Despite notable advancements, many existing methods remain tailored to specific problems, leaving a broader applicability to general norms less understood. This paper investigates the intrinsic properties of $\ell_p$ norms that facilitate their widespread use and seeks to abstract these qualities to a more general setting. We identify supermodularity -- often reserved for combinatorial set functions and characterized by monotone gradients -- as a defining feature beneficial for $ \|\cdot\|_p^p$. We introduce the notion of $p$-supermodularity for norms, asserting that a norm is $p$-supermodular if its $p^{th}$ power function exhibits supermodularity. The association of supermodularity with norms offers a new lens through which to view and construct algorithms. Our work demonstrates that for a large class of problems $p$-supermodularity is a sufficient criterion for developing good algorithms. This is either by reframing existing algorithms for problems like Online Load-Balancing and Bandits with Knapsacks through a supermodular lens, or by introducing novel analyses for problems such as Online Covering, Online Packing, and Stochastic Probing. Moreover, we prove that every symmetric norm can be approximated by a $p$-supermodular norm. Together, these recover and extend several results from the literature, and support $p$-supermodularity as a unified theoretical framework for optimization challenges centered around norm-related problems.

In the scenario-based evaluation of machine learning models, a key problem is how to construct test datasets that represent various scenarios. The methodology proposed in this paper is to construct a benchmark and attach metadata to each test case. Then a test system can be constructed with test morphisms that filter the test cases based on metadata to form a dataset. The paper demonstrates this methodology with large language models for code generation. A benchmark called ScenEval is constructed from problems in textbooks, an online tutorial website and Stack Overflow. Filtering by scenario is demonstrated and the test sets are used to evaluate ChatGPT for Java code generation. Our experiments found that the performance of ChatGPT decreases with the complexity of the coding task. It is weakest for advanced topics like multi-threading, data structure algorithms and recursive methods. The Java code generated by ChatGPT tends to be much shorter than reference solution in terms of number of lines, while it is more likely to be more complex in both cyclomatic and cognitive complexity metrics, if the generated code is correct. However, the generated code is more likely to be less complex than the reference solution if the code is incorrect.

In the field of crowd counting research, many recent deep learning based methods have demonstrated robust capabilities for accurately estimating crowd sizes. However, the enhancement in their performance often arises from an increase in the complexity of the model structure. This paper discusses how to construct high-performance crowd counting models using only simple structures. We proposes the Fuss-Free Network (FFNet) that is characterized by its simple and efficieny structure, consisting of only a backbone network and a multi-scale feature fusion structure. The multi-scale feature fusion structure is a simple structure consisting of three branches, each only equipped with a focus transition module, and combines the features from these branches through the concatenation operation. Our proposed crowd counting model is trained and evaluated on four widely used public datasets, and it achieves accuracy that is comparable to that of existing complex models. Furthermore, we conduct a comprehensive evaluation by replacing the existing backbones of various models such as FFNet and CCTrans with different networks, including MobileNet-v3, ConvNeXt-Tiny, and Swin-Transformer-Small. The experimental results further indicate that excellent crowd counting performance can be achieved with the simplied structure proposed by us.

In supervised learning, understanding an input's proximity to the training data can help a model decide whether it has sufficient evidence for reaching a reliable prediction. While powerful probabilistic models such as Gaussian Processes naturally have this property, deep neural networks often lack it. In this paper, we introduce Distance Aware Bottleneck (DAB), i.e., a new method for enriching deep neural networks with this property. Building on prior information bottleneck approaches, our method learns a codebook that stores a compressed representation of all inputs seen during training. The distance of a new example from this codebook can serve as an uncertainty estimate for the example. The resulting model is simple to train and provides deterministic uncertainty estimates by a single forward pass. Finally, our method achieves better out-of-distribution (OOD) detection and misclassification prediction than prior methods, including expensive ensemble methods, deep kernel Gaussian Processes, and approaches based on the standard information bottleneck.

Recently, transductive learning methods, which leverage holdout sets during training, have gained popularity for their potential to improve speed, accuracy, and fairness in machine learning models. Despite this, the composition of the holdout set itself, particularly the balance of sensitive sub-groups, has been largely overlooked. Our experiments on CIFAR and CelebA datasets show that compositional changes in the holdout set can substantially influence fairness metrics. Imbalanced holdout sets exacerbate existing disparities, while balanced holdouts can mitigate issues introduced by imbalanced training data. These findings underline the necessity of constructing holdout sets that are both diverse and representative.

Segmentation models for brain lesions in MRI are commonly developed for a specific disease and trained on data with a predefined set of MRI modalities. Each such model cannot segment the disease using data with a different set of MRI modalities, nor can it segment any other type of disease. Moreover, this training paradigm does not allow a model to benefit from learning from heterogeneous databases that may contain scans and segmentation labels for different types of brain pathologies and diverse sets of MRI modalities. Is it feasible to use Federated Learning (FL) for training a single model on client databases that contain scans and labels of different brain pathologies and diverse sets of MRI modalities? We demonstrate promising results by combining appropriate, simple, and practical modifications to the model and training strategy: Designing a model with input channels that cover the whole set of modalities available across clients, training with random modality drop, and exploring the effects of feature normalization methods. Evaluation on 7 brain MRI databases with 5 different diseases shows that such FL framework can train a single model that is shown to be very promising in segmenting all disease types seen during training. Importantly, it is able to segment these diseases in new databases that contain sets of modalities different from those in training clients. These results demonstrate, for the first time, feasibility and effectiveness of using FL to train a single segmentation model on decentralised data with diverse brain diseases and MRI modalities, a necessary step towards leveraging heterogeneous real-world databases. Code will be made available at: //github.com/FelixWag/FL-MultiDisease-MRI

Cooperative Multi-Agent Reinforcement Learning (MARL) algorithms, trained only to optimize task reward, can lead to a concentration of power where the failure or adversarial intent of a single agent could decimate the reward of every agent in the system. In the context of teams of people, it is often useful to explicitly consider how power is distributed to ensure no person becomes a single point of failure. Here, we argue that explicitly regularizing the concentration of power in cooperative RL systems can result in systems which are more robust to single agent failure, adversarial attacks, and incentive changes of co-players. To this end, we define a practical pairwise measure of power that captures the ability of any co-player to influence the ego agent's reward, and then propose a power-regularized objective which balances task reward and power concentration. Given this new objective, we show that there always exists an equilibrium where every agent is playing a power-regularized best-response balancing power and task reward. Moreover, we present two algorithms for training agents towards this power-regularized objective: Sample Based Power Regularization (SBPR), which injects adversarial data during training; and Power Regularization via Intrinsic Motivation (PRIM), which adds an intrinsic motivation to regulate power to the training objective. Our experiments demonstrate that both algorithms successfully balance task reward and power, leading to lower power behavior than the baseline of task-only reward and avoid catastrophic events in case an agent in the system goes off-policy.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司