亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Target speaker extraction (TSE) aims to extract the target speaker's voice from the input mixture. Previous studies have concentrated on high-overlapping scenarios. However, real-world applications usually meet more complex scenarios like variable speaker overlapping and target speaker absence. In this paper, we introduces a framework to perform continuous TSE (C-TSE), comprising a target speaker voice activation detection (TSVAD) and a TSE model. This framework significantly improves TSE performance on similar speakers and enhances personalization, which is lacking in traditional diarization methods. In detail, unlike conventional TSVAD deployed to refine the diarization results, the proposed Attention-target speaker voice activation detection (A-TSVAD) directly generates timestamps of the target speaker. We also explore some different integration methods of A-TSVAD and TSE by comparing the cascaded and parallel methods. The framework's effectiveness is assessed using a range of metrics, including diarization and enhancement metrics. Our experiments demonstrate that A-TSVAD outperforms conventional methods in reducing diarization errors. Furthermore, the integration of A-TSVAD and TSE in a sequential cascaded manner further enhances extraction accuracy.

相關內容

IEEE軟件工程事務處理對定義明確的理論結果和對軟件的構建、分析或管理有潛在影響的實證研究感興趣。這些交易的范圍從制定原則的機制到將這些原則應用到具體環境。具體的主題領域包括:a)開發和維護方法和模型,例如軟件系統的規范、設計和實現的技術和原則,包括符號和過程模型;b)評估方法,例如軟件測試和驗證、可靠性模型、測試和診斷程序,用于錯誤控制的軟件冗余和設計,以及過程和產品各個方面的測量和評估;c)軟件項目管理,例如生產力因素、成本模型、進度和組織問題、標準;d)工具和環境,例如特定工具,集成工具環境,包括相關的體系結構、數據庫、并行和分布式處理問題;e)系統問題,例如硬件-軟件權衡;f)最新調查,提供對某一特定關注領域歷史發展的綜合和全面審查。 官網地址:

We propose FocusCLIP, integrating subject-level guidance--a specialized mechanism for target-specific supervision--into the CLIP framework for improved zero-shot transfer on human-centric tasks. Our novel contributions enhance CLIP on both the vision and text sides. On the vision side, we incorporate ROI heatmaps emulating human visual attention mechanisms to emphasize subject-relevant image regions. On the text side, we introduce human pose descriptions to provide rich contextual information. For human-centric tasks, FocusCLIP is trained with images from the MPII Human Pose dataset. The proposed approach surpassed CLIP by an average of 8.61% across five previously unseen datasets covering three human-centric tasks. FocusCLIP achieved an average accuracy of 33.65% compared to 25.04% by CLIP. We observed a 3.98% improvement in activity recognition, a 14.78% improvement in age classification, and a 7.06% improvement in emotion recognition. Moreover, using our proposed single-shot LLM prompting strategy, we release a high-quality MPII Pose Descriptions dataset to encourage further research in multimodal learning for human-centric tasks. Furthermore, we also demonstrate the effectiveness of our subject-level supervision on non-human-centric tasks. FocusCLIP shows a 2.47% improvement over CLIP in zero-shot bird classification using the CUB dataset. Our findings emphasize the potential of integrating subject-level guidance with general pretraining methods for enhanced downstream performance.

Automated Program Repair (APR) has evolved significantly with the advent of Large Language Models (LLMs). Fine-tuning LLMs for program repair is a recent avenue of research, with many dimensions which have not been explored. Existing work mostly fine-tunes LLMs with naive code representations and is fundamentally limited in its ability to fine-tune larger LLMs. To address this problem, we propose RepairLLaMA, a novel program repair approach that combines 1) code representations for APR and 2) the state-of-the-art parameter-efficient LLM fine-tuning technique called LoRA. This results in RepairLLaMA producing a highly effective `program repair adapter' for fixing bugs with language models. Our experiments demonstrate the validity of both concepts. First, fine-tuning adapters with program repair specific code representations enables the model to use meaningful repair signals. Second, parameter-efficient fine-tuning helps fine-tuning to converge and contributes to the effectiveness of the repair adapter to fix data-points outside the fine-tuning data distribution. Overall, RepairLLaMA correctly fixes 125 Defects4J v2 and 82 HumanEval-Java bugs, outperforming all baselines.

Aspect Sentiment Understanding (ASU) in interactive scenarios (e.g., Question-Answering and Dialogue) has attracted ever-more interest in recent years and achieved important progresses. However, existing studies on interactive ASU largely ignore the coreference issue for opinion targets (i.e., aspects), while this phenomenon is ubiquitous in interactive scenarios especially dialogues, limiting the ASU performance. Recently, large language models (LLMs) shows the powerful ability to integrate various NLP tasks with the chat paradigm. In this way, this paper proposes a new Chat-based Aspect Sentiment Understanding (ChatASU) task, aiming to explore LLMs' ability in understanding aspect sentiments in dialogue scenarios. Particularly, this ChatASU task introduces a sub-task, i.e., Aspect Chain Reasoning (ACR) task, to address the aspect coreference issue. On this basis, we propose a Trusted Self-reflexion Approach (TSA) with ChatGLM as backbone to ChatASU. Specifically, this TSA treats the ACR task as an auxiliary task to boost the performance of the primary ASU task, and further integrates trusted learning into reflexion mechanisms to alleviate the LLMs-intrinsic factual hallucination problem in TSA. Furthermore, a high-quality ChatASU dataset is annotated to evaluate TSA, and extensive experiments show that our proposed TSA can significantly outperform several state-of-the-art baselines, justifying the effectiveness of TSA to ChatASU and the importance of considering the coreference and hallucination issues in ChatASU.

COMpression with Bayesian Implicit NEural Representations (COMBINER) is a recent data compression method that addresses a key inefficiency of previous Implicit Neural Representation (INR)-based approaches: it avoids quantization and enables direct optimization of the rate-distortion performance. However, COMBINER still has significant limitations: 1) it uses factorized priors and posterior approximations that lack flexibility; 2) it cannot effectively adapt to local deviations from global patterns in the data; and 3) its performance can be susceptible to modeling choices and the variational parameters' initializations. Our proposed method, Robust and Enhanced COMBINER (RECOMBINER), addresses these issues by 1) enriching the variational approximation while retaining a low computational cost via a linear reparameterization of the INR weights, 2) augmenting our INRs with learnable positional encodings that enable them to adapt to local details and 3) splitting high-resolution data into patches to increase robustness and utilizing expressive hierarchical priors to capture dependency across patches. We conduct extensive experiments across several data modalities, showcasing that RECOMBINER achieves competitive results with the best INR-based methods and even outperforms autoencoder-based codecs on low-resolution images at low bitrates. Our PyTorch implementation is available at //github.com/cambridge-mlg/RECOMBINER/.

Mittag-Leffler correlated noise (M-L noise) plays a crucial role in the dynamics of complex systems, yet the scientific community has lacked tools for its direct generation. Addressing this gap, our work introduces GenML, a Python library specifically designed for generating M-L noise. We detail the architecture and functionalities of GenML and its underlying algorithmic approach, which enables the precise simulation of M-L noise. The effectiveness of GenML is validated through quantitative analyses of autocorrelation functions and diffusion behaviors, showcasing its capability to accurately replicate theoretical noise properties. Our contribution with GenML enables the effective application of M-L noise data in numerical simulation and data-driven methods for describing complex systems, moving beyond mere theoretical modeling.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司