亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Probability measures on the sphere form an important class of statistical models and are used, for example, in modeling directional data or shapes. Due to their widespread use, but also as an algorithmic building block, efficient sampling of distributions on the sphere is highly desirable. We propose a shrinkage based and an idealized geodesic slice sampling Markov chain, designed to generate approximate samples from distributions on the sphere. In particular, the shrinkage based algorithm works in any dimension, is straight-forward to implement and has no tuning parameters. We verify reversibility and show that under weak regularity conditions geodesic slice sampling is uniformly ergodic. Numerical experiments show that the proposed slice samplers achieve excellent mixing on challenging targets including the Bingham distribution and mixtures of von Mises-Fisher distributions. In these settings our approach outperforms standard samplers such as random-walk Metropolis Hastings and Hamiltonian Monte Carlo.

相關內容

We consider a boundary value problem (BVP) modelling one-dimensional heat-conduction with radiation, which is derived from the Stefan-Boltzmann law. The problem strongly depends on the parameters, making difficult to estimate the solution. We use an analytical approach to determine upper and lower bounds to the exact solution of the BVP, which allows estimating the latter. Finally, we support our theoretical arguments with numerical data, by implementing them into the MAPLE computer program.

Gaussian processes are arguably the most important class of spatiotemporal models within machine learning. They encode prior information about the modeled function and can be used for exact or approximate Bayesian learning. In many applications, particularly in physical sciences and engineering, but also in areas such as geostatistics and neuroscience, invariance to symmetries is one of the most fundamental forms of prior information one can consider. The invariance of a Gaussian process' covariance to such symmetries gives rise to the most natural generalization of the concept of stationarity to such spaces. In this work, we develop constructive and practical techniques for building stationary Gaussian processes on a very large class of non-Euclidean spaces arising in the context of symmetries. Our techniques make it possible to (i) calculate covariance kernels and (ii) sample from prior and posterior Gaussian processes defined on such spaces, both in a practical manner. This work is split into two parts, each involving different technical considerations: part I studies compact spaces, while part II studies non-compact spaces possessing certain structure. Our contributions make the non-Euclidean Gaussian process models we study compatible with well-understood computational techniques available in standard Gaussian process software packages, thereby making them accessible to practitioners.

We assume to be given structural equations over discrete variables inducing a directed acyclic graph, namely, a structural causal model, together with data about its internal nodes. The question we want to answer is how we can compute bounds for partially identifiable counterfactual queries from such an input. We start by giving a map from structural casual models to credal networks. This allows us to compute exact counterfactual bounds via algorithms for credal nets on a subclass of structural causal models. Exact computation is going to be inefficient in general given that, as we show, causal inference is NP-hard even on polytrees. We target then approximate bounds via a causal EM scheme. We evaluate their accuracy by providing credible intervals on the quality of the approximation; we show through a synthetic benchmark that the EM scheme delivers accurate results in a fair number of runs. In the course of the discussion, we also point out what seems to be a neglected limitation to the trending idea that counterfactual bounds can be computed without knowledge of the structural equations. We also present a real case study on palliative care to show how our algorithms can readily be used for practical purposes.

An important dimension of pointer analysis is field-Sensitive, which has been proven to effectively enhance the accuracy of pointer analysis results. A crucial area of research within field-Sensitive is Structure-Sensitive. Structure-Sensitive has been shown to further enhance the precision of pointer analysis. However, existing structure-sensitive methods cannot handle cases where an object possesses multiple structures, even though it's common for an object to have multiple structures throughout its lifecycle. This paper introduces MTO-SS, a flow-sensitive pointer analysis method for objects with multiple structures. Our observation is that it's common for an object to possess multiple structures throughout its lifecycle. The novelty of MTO-SS lies in: MTO-SS introduces Structure-Flow-Sensitive. An object has different structure information at different locations in the program. To ensure the completeness of an object's structure information, MTO-SS always performs weak updates on the object's type. This means that once an object possesses a structure, this structure will accompany the object throughout its lifecycle. We evaluated our method of multi-structured object pointer analysis using the 12 largest programs in GNU Coreutils and compared the experimental results with sparse flow-sensitive method and another method, TYPECLONE, which only allows an object to have one structure information. Our experimental results confirm that MTO-SS is more precise than both sparse flow-sensitive pointer analysis and TYPECLONE, being able to answer, on average, over 22\% more alias queries with a no-alias result compared to the former, and over 3\% more compared to the latter. Additionally, the time overhead introduced by our method is very low.

We consider twisted permutation codes, a class of frequency permutation arrays obtained from finite groups with multiple permutation representations of the same degree, introduced by Gillespie, Praeger and Spiga (and later studied by Akbari, Gillespie and Praeger), and develop a decoding algorithm for such codes based on earlier work of the first author for permutation group codes. In particular, we show how to implement this algorithm for an infinite family of groups considered by Akbari, Gillespie and Praeger.

Estimating a prediction function is a fundamental component of many data analyses. The Super Learner ensemble, a particular implementation of stacking, has desirable theoretical properties and has been used successfully in many applications. Dimension reduction can be accomplished by using variable screening algorithms, including the lasso, within the ensemble prior to fitting other prediction algorithms. However, the performance of a Super Learner using the lasso for dimension reduction has not been fully explored in cases where the lasso is known to perform poorly. We provide empirical results that suggest that a diverse set of candidate screening algorithms should be used to protect against poor performance of any one screen, similar to the guidance for choosing a library of prediction algorithms for the Super Learner.

We extend classical methods of computational complexity to the setting of distributed computing, where they are sometimes more effective than in their original context. Our focus is on distributed decision in the LOCAL model, where multiple networked computers communicate via synchronous message-passing to collectively answer a question about their network topology. Rather unusually, we impose two orthogonal constraints on the running time of this model: the number of communication rounds is bounded by a constant, and the number of computation steps of each computer is polynomially bounded by the size of its local input and the messages it receives. By letting two players take turns assigning certificates to all computers in the network, we obtain a generalization of the polynomial hierarchy (and hence of the complexity classes $\mathbf{P}$ and $\mathbf{NP}$). We then extend some key results of complexity theory to this setting, in particular the Cook-Levin theorem (which identifies Boolean satisfiability as a complete problem for $\mathbf{NP}$), and Fagin's theorem (which characterizes $\mathbf{NP}$ as the problems expressible in existential second-order logic). The original results can be recovered as the special case where the network consists of a single computer. But perhaps more surprisingly, the task of separating complexity classes becomes easier in the general case: we can show that our hierarchy is infinite, while it remains notoriously open whether the same is true in the case of a single computer. (By contrast, a collapse of our hierarchy would have implied a collapse of the polynomial hierarchy.) As an application, we propose quantifier alternation as a new approach to measuring the locality of problems in distributed computing.

Completely random measures (CRMs) and their normalizations (NCRMs) offer flexible models in Bayesian nonparametrics. But their infinite dimensionality presents challenges for inference. Two popular finite approximations are truncated finite approximations (TFAs) and independent finite approximations (IFAs). While the former have been well-studied, IFAs lack similarly general bounds on approximation error, and there has been no systematic comparison between the two options. In the present work, we propose a general recipe to construct practical finite-dimensional approximations for homogeneous CRMs and NCRMs, in the presence or absence of power laws. We call our construction the automated independent finite approximation (AIFA). Relative to TFAs, we show that AIFAs facilitate more straightforward derivations and use of parallel computing in approximate inference. We upper bound the approximation error of AIFAs for a wide class of common CRMs and NCRMs -- and thereby develop guidelines for choosing the approximation level. Our lower bounds in key cases suggest that our upper bounds are tight. We prove that, for worst-case choices of observation likelihoods, TFAs are more efficient than AIFAs. Conversely, we find that in real-data experiments with standard likelihoods, AIFAs and TFAs perform similarly. Moreover, we demonstrate that AIFAs can be used for hyperparameter estimation even when other potential IFA options struggle or do not apply.

Using persistent homology to guide optimization has emerged as a novel application of topological data analysis. Existing methods treat persistence calculation as a black box and backpropagate gradients only onto the simplices involved in particular pairs. We show how the cycles and chains used in the persistence calculation can be used to prescribe gradients to larger subsets of the domain. In particular, we show that in a special case, which serves as a building block for general losses, the problem can be solved exactly in linear time. This relies on another contribution of this paper, which eliminates the need to examine a factorial number of permutations of simplices with the same value. We present empirical experiments that show the practical benefits of our algorithm: the number of steps required for the optimization is reduced by an order of magnitude.

Triple extraction is an essential task in information extraction for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end triple extraction task for sequence generation. Since generative triple extraction may struggle to capture long-term dependencies and generate unfaithful triples, we introduce a novel model, contrastive triple extraction with a generative transformer. Specifically, we introduce a single shared transformer module for encoder-decoder-based generation. To generate faithful results, we propose a novel triplet contrastive training object. Moreover, we introduce two mechanisms to further improve model performance (i.e., batch-wise dynamic attention-masking and triple-wise calibration). Experimental results on three datasets (i.e., NYT, WebNLG, and MIE) show that our approach achieves better performance than that of baselines.

北京阿比特科技有限公司