We present an open-source Visual-Inertial-Leg Odometry (VILO) state estimation solution, Cerberus, for legged robots that estimates position precisely on various terrains in real time using a set of standard sensors, including stereo cameras, IMU, joint encoders, and contact sensors. In addition to estimating robot states, we also perform online kinematic parameter calibration and contact outlier rejection to substantially reduce position drift. Hardware experiments in various indoor and outdoor environments validate that calibrating kinematic parameters within the Cerberus can reduce estimation drift to lower than 1% during long distance high speed locomotion. Our drift results are better than any other state estimation method using the same set of sensors reported in the literature. Moreover, our state estimator performs well even when the robot is experiencing large impacts and camera occlusion. The implementation of the state estimator, along with the datasets used to compute our results, are available at //github.com/ShuoYangRobotics/Cerberus.
Communication between robots and the server is a major problem for cloud robotic systems. In this paper, we address the problem caused by data loss during such communications, and propose an efficient buffering algorithm, called AFR, to solve the problem. We model the problem into an optimization problem to maximize the received Quantity of Information (QoI). Our AFR algorithm is formally proved to achieve near-optimal QoI, which has a lower bound that is a constant multiple of the unrealizable optimal QoI. We implement our AFR algorithm in ROS without changing the interface or API for the applications. Our experiments on two cloud robot applications show that our AFR algorithm can efficiently and effectively reduce the impact of data loss. For the remote mapping application, the RMSE caused by data loss can be reduced by about 20%. For the remote tracking application, the probability of tracking failure caused by data loss can be reduced from about 40%-60% to under 10%. Meanwhile, our AFR algorithm introduces time overhead of under 10 microseconds.
To build commercial robots, skid-steering mechanical design is of increased popularity due to its manufacturing simplicity and unique mechanism. However, these also cause significant challenges on software and algorithm design, especially for the pose estimation (i.e., determining the robot's rotation and position) of skid-steering robots, since they change their orientation with an inevitable skid. To tackle this problem, we propose a probabilistic sliding-window estimator dedicated to skid-steering robots, using measurements from a monocular camera, the wheel encoders, and optionally an inertial measurement unit (IMU). Specifically, we explicitly model the kinematics of skid-steering robots by both track instantaneous centers of rotation (ICRs) and correction factors, which are capable of compensating for the complexity of track-to-terrain interaction, the imperfectness of mechanical design, terrain conditions and smoothness, etc. To prevent performance reduction in robots' long-term missions, the time- and location- varying kinematic parameters are estimated online along with pose estimation states in a tightly-coupled manner. More importantly, we conduct in-depth observability analysis for different sensors and design configurations in this paper, which provides us with theoretical tools in making the correct choice when building real commercial robots. In our experiments, we validate the proposed method by both simulation tests and real-world experiments, which demonstrate that our method outperforms competing methods by wide margins.
We propose a novel and efficient lifting approach for the optimal control of rigid-body systems with contacts to improve the convergence properties of Newton-type methods. To relax the high nonlinearity, we consider the state, acceleration, contact forces, and control input torques, as optimization variables and the inverse dynamics and acceleration constraints on the contact frames as equality constraints. We eliminate the update of the acceleration, contact forces, and their dual variables from the linear equation to be solved in each Newton-type iteration in an efficient manner. As a result, the computational cost per Newton-type iteration is almost identical to that of the conventional non-lifted Newton-type iteration that embeds contact dynamics in the state equation. We conducted numerical experiments on the whole-body optimal control of various quadrupedal gaits subject to the friction cone constraints considered in interior-point methods and demonstrated that the proposed method can significantly increase the convergence speed to more than twice that of the conventional non-lifted approach.
Prompt tuning is a parameter-efficient approach to adapting pre-trained language models to downstream tasks. Although prompt tuning has been shown to match the performance of full model tuning when training data is sufficient, it tends to struggle in few-shot learning settings. In this paper, we present Multi-task Pre-trained Modular Prompt (MP2) to boost prompt tuning for few-shot learning. MP2 is a set of combinable prompts pre-trained on 38 Chinese tasks. On downstream tasks, the pre-trained prompts are selectively activated and combined, leading to strong compositional generalization to unseen tasks. To bridge the gap between pre-training and fine-tuning, we formulate upstream and downstream tasks into a unified machine reading comprehension task. Extensive experiments under two learning paradigms, i.e., gradient descent and black-box tuning, show that MP2 significantly outperforms prompt tuning, full model tuning, and prior prompt pre-training methods in few-shot settings. In addition, we demonstrate that MP2 can achieve surprisingly fast and strong adaptation to downstream tasks by merely learning 8 parameters to combine the pre-trained modular prompts.
Sim-to-real is a mainstream method to cope with the large number of trials needed by typical deep reinforcement learning. However, transferring a policy trained in simulation to actual hardware remains challenging due to the reality gap. In particular, the characteristics of actuators in legged robots have a considerable influence on sim-to-real transfer. High reduction ratio gears are widely used in actuators, and the reality gap issue becomes especially pronounced when even the utilization of backdrivability is considered to control joints compliantly. We propose a new simulation model of gears to address this gap. Additionally, the difficulty in achieving stable bipedal locomotion causes typical methods to fail to tune physical parameters in simulation with the behavior of transferred policy. Thus, we propose a method for system identification that can utilize failed attempts. The method's effectiveness is verified using a biped robot, the ROBOTIS-OP3, and the sim-to-real transferred policy can stabilize the robot under severe disturbances and walk on uneven surfaces without force and torque sensors.
State estimation in complex illumination environments based on conventional visual-inertial odometry is a challenging task due to the severe visual degradation of the visual camera. The thermal infrared camera is capable of all-day time and is less affected by illumination variation. However, most existing visual data association algorithms are incompatible because the thermal infrared data contains large noise and low contrast. Motivated by the phenomenon that thermal radiation varies most significantly at the edges of objects, the study proposes an ETIO, which is the first edge-based monocular thermal-inertial odometry for robust localization in visually degraded environments. Instead of the raw image, we utilize the binarized image from edge extraction for pose estimation to overcome the poor thermal infrared image quality. Then, an adaptive feature tracking strategy ADT-KLT is developed for robust data association based on limited edge information and its distance distribution. Finally, a pose graph optimization performs real-time estimation over a sliding window of recent states by combining IMU pre-integration with reprojection error of all edge feature observations. We evaluated the performance of the proposed system on public datasets and real-world experiments and compared it against state-of-the-art methods. The proposed ETIO was verified with the ability to enable accurate and robust localization all-day time.
Motion planning and control are crucial components of robotics applications. Here, spatio-temporal hard constraints like system dynamics and safety boundaries (e.g., obstacles in automated driving) restrict the robot's motions. Direct methods from optimal control solve a constrained optimization problem. However, in many applications finding a proper cost function is inherently difficult because of the weighting of partially conflicting objectives. On the other hand, Imitation Learning (IL) methods such as Behavior Cloning (BC) provide a intuitive framework for learning decision-making from offline demonstrations and constitute a promising avenue for planning and control in complex robot applications. Prior work primarily relied on soft-constraint approaches, which use additional auxiliary loss terms describing the constraints. However, catastrophic safety-critical failures might occur in out-of-distribution (OOD) scenarios. This work integrates the flexibility of IL with hard constraint handling in optimal control. Our approach constitutes a general framework for constraint robotic motion planning and control using offline IL. Hard constraints are integrated into the learning problem in a differentiable manner, via explicit completion and gradient-based correction. Simulated experiments of mobile robot navigation and automated driving provide evidence for the performance of the proposed method.
Providing densely shaped reward functions for RL algorithms is often exceedingly challenging, motivating the development of RL algorithms that can learn from easier-to-specify sparse reward functions. This sparsity poses new exploration challenges. One common way to address this problem is using demonstrations to provide initial signal about regions of the state space with high rewards. However, prior RL from demonstrations algorithms introduce significant complexity and many hyperparameters, making them hard to implement and tune. We introduce Monte Carlo Augmented Actor Critic (MCAC), a parameter free modification to standard actor-critic algorithms which initializes the replay buffer with demonstrations and computes a modified $Q$-value by taking the maximum of the standard temporal distance (TD) target and a Monte Carlo estimate of the reward-to-go. This encourages exploration in the neighborhood of high-performing trajectories by encouraging high $Q$-values in corresponding regions of the state space. Experiments across $5$ continuous control domains suggest that MCAC can be used to significantly increase learning efficiency across $6$ commonly used RL and RL-from-demonstrations algorithms. See //sites.google.com/view/mcac-rl for code and supplementary material.
Autonomous robotic systems operating in human environments must understand their surroundings to make accurate and safe decisions. In crowded human scenes with close-up human-robot interaction and robot navigation, a deep understanding requires reasoning about human motion and body dynamics over time with human body pose estimation and tracking. However, existing datasets either do not provide pose annotations or include scene types unrelated to robotic applications. Many datasets also lack the diversity of poses and occlusions found in crowded human scenes. To address this limitation we introduce JRDB-Pose, a large-scale dataset and benchmark for multi-person pose estimation and tracking using videos captured from a social navigation robot. The dataset contains challenge scenes with crowded indoor and outdoor locations and a diverse range of scales and occlusion types. JRDB-Pose provides human pose annotations with per-keypoint occlusion labels and track IDs consistent across the scene. A public evaluation server is made available for fair evaluation on a held-out test set. JRDB-Pose is available at //jrdb.erc.monash.edu/ .
Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications. With the growing use of unmanned aerial systems (UASs), MOT methods for aerial surveillance is in high demand. Application of MOT in UAS presents specific challenges such as moving sensor, changing zoom levels, dynamic background, illumination changes, obscurations and small objects. In this work, we present a robust object tracking architecture aimed to accommodate for the noise in real-time situations. We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space. DeepEKF utilizes a learned image embedding along with an attention mechanism trained to weight the importance of areas in an image to predict future states. For the visual scoring, we experiment with different similarity measures to calculate distance based on entity appearances, including a convolutional neural network (CNN) encoder, pre-trained using Siamese networks. In initial evaluation experiments, we show that our method, combining scoring structure of the kinematic and visual models within a MHT framework, has improved performance especially in edge cases where entity motion is unpredictable, or the data presents frames with significant gaps.