亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A pivotal feature of IPv6 is its plug-and-play capability that enables hosts to integrate seamlessly into networks. In the absence of a trusted authority or security infrastructure, the challenge for hosts is generating their own address and verifying ownership of others. Cryptographically Generated Addresses (CGA) solves this problem by binding IPv6 addresses to hosts' public keys to prove address ownership. CGA generation involves solving a cryptographic puzzle similar to Bitcoin's Proof-of-Work (PoW) to deter address spoofing. Unfortunately, solving the puzzle often causes undesirable address generation delays, which has hindered the adoption of CGA. In this paper, we present Bitcoin-Certified Addresses (BCA), a new technique to bind IPv6 addresses to hosts' public keys. BCA reduces the computational cost of generating addresses by using the PoW computed by Bitcoin nodes to secure the binding. Compared to CGA, BCA provides better protection against spoofing attacks and improves the privacy of hosts. Due to the decentralized nature of the Bitcoin network, BCA avoids reliance on a trusted authority, similar to CGA. BCA shows how the PoW computed by Bitcoin nodes can be reused, which saves costs for hosts and makes Bitcoin mining more efficient.

相關內容

比特幣(Bitcoin)是一種去中心化的點對點的電子貨幣。其特征包括:1、去中心化,將鑄幣權下放給個人,人人都可以生產;2、總量一定,是通貨緊縮的貨幣;3、匿名/即時交易。

Methods that use neural networks for synthesizing 3D shapes in the form of a part-based representation have been introduced over the last few years. These methods represent shapes as a graph or hierarchy of parts and enable a variety of applications such as shape sampling and reconstruction. However, current methods do not allow easily regenerating individual shape parts according to user preferences. In this paper, we investigate techniques that allow the user to generate multiple, diverse suggestions for individual parts. Specifically, we experiment with multimodal deep generative models that allow sampling diverse suggestions for shape parts and focus on models which have not been considered in previous work on shape synthesis. To provide a comparative study of these techniques, we introduce a method for synthesizing 3D shapes in a part-based representation and evaluate all the part suggestion techniques within this synthesis method. In our method, which is inspired by previous work, shapes are represented as a set of parts in the form of implicit functions which are then positioned in space to form the final shape. Synthesis in this representation is enabled by a neural network architecture based on an implicit decoder and a spatial transformer. We compare the various multimodal generative models by evaluating their performance in generating part suggestions. Our contribution is to show with qualitative and quantitative evaluations which of the new techniques for multimodal part generation perform the best and that a synthesis method based on the top-performing techniques allows the user to more finely control the parts that are generated in the 3D shapes while maintaining high shape fidelity when reconstructing shapes.

Image-Text Matching (ITM) task, a fundamental vision-language (VL) task, suffers from the inherent ambiguity arising from multiplicity and imperfect annotations. Deterministic functions are not sufficiently powerful to capture ambiguity, prompting the exploration of probabilistic embeddings to tackle the challenge. However, the existing probabilistic ITM approach encounters two key shortcomings; the burden of heavy computations due to the Monte Carlo approximation, and the loss saturation issue in the face of abundant false negatives. To overcome the issues, this paper presents an improved Probabilistic Cross-Modal Embeddings (named PCME++) by introducing a new probabilistic distance with a closed-form solution. In addition, two optimization techniques are proposed to enhance PCME++ further: first, the incorporation of pseudo-positives to prevent the loss saturation problem under massive false negatives; second, mixed sample data augmentation for probabilistic matching. Experimental results on MS-COCO Caption and two extended benchmarks, CxC and ECCV Caption, demonstrate the effectiveness of PCME++ compared to state-of-the-art ITM methods. The robustness of PCME++ is also evaluated under noisy image-text correspondences. In addition, the potential applicability of PCME++ in automatic prompt tuning for zero-shot classification is shown. The code is available at //github.com/naver-ai/pcmepp.

Local stochastic gradient descent (Local-SGD), also referred to as federated averaging, is an approach to distributed optimization where each device performs more than one SGD update per communication. This work presents an empirical study of {\it asynchronous} Local-SGD for training language models; that is, each worker updates the global parameters as soon as it has finished its SGD steps. We conduct a comprehensive investigation by examining how worker hardware heterogeneity, model size, number of workers, and optimizer could impact the learning performance. We find that with naive implementations, asynchronous Local-SGD takes more iterations to converge than its synchronous counterpart despite updating the (global) model parameters more frequently. We identify momentum acceleration on the global parameters when worker gradients are stale as a key challenge. We propose a novel method that utilizes a delayed Nesterov momentum update and adjusts the workers' local training steps based on their computation speed. This approach, evaluated with models up to 150M parameters on the C4 dataset, matches the performance of synchronous Local-SGD in terms of perplexity per update step, and significantly surpasses it in terms of wall clock time.

Diacritization plays a pivotal role in improving readability and disambiguating the meaning of Arabic texts. Efforts have so far focused on marking every eligible character (Full Diacritization). Comparatively overlooked, Partial Diacritzation (PD) is the selection of a subset of characters to be marked to aid comprehension where needed. Research has indicated that excessive diacritic marks can hinder skilled readers--reducing reading speed and accuracy. We conduct a behavioral experiment and show that partially marked text is often easier to read than fully marked text, and sometimes easier than plain text. In this light, we introduce Context-Contrastive Partial Diacritization (CCPD)--a novel approach to PD which integrates seamlessly with existing Arabic diacritization systems. CCPD processes each word twice, once with context and once without, and diacritizes only the characters with disparities between the two inferences. Further, we introduce novel indicators for measuring partial diacritization quality (SR, PDER, HDER, ERE), essential for establishing this as a machine learning task. Lastly, we introduce TD2, a Transformer-variant of an established model which offers a markedly different per formance profile on our proposed indicators compared to all other known systems.

A resilient Internet infrastructure is critical in our highly interconnected society. However, the Internet faces several vulnerabilities, ranging from natural disasters to human activities, that can impact the physical layer and, in turn, the higher network layers, such as IP links. In this paper, we introduce Xaminer, the first Internet cross-layer resilience analysis tool, to evaluate the interplay between physical- and network-layer failures. Using a cross-layer Internet map and a failure event model, Xaminer generates a risk profile encompassing a cross-layer impact report, critical infrastructure identification at each layer, and the discovery of trends and patterns under different failure event settings. Xaminer's key strengths lie in its adaptability to diverse disaster scenarios, the ability to assess risks at various granularities, and the capability to generate joint risk profiles for multiple events. We demonstrate Xaminer's capabilities in cross-layer analysis across a spectrum of disaster event models and regions, showcasing its potential role in facilitating well-informed decision-making for resilience planning and deployments.

Jewelry recognition is a complex task due to the different styles and designs of accessories. Precise descriptions of the various accessories is something that today can only be achieved by experts in the field of jewelry. In this work, we propose an approach for jewelry recognition using computer vision techniques and image captioning, trying to simulate this expert human behavior of analyzing accessories. The proposed methodology consist on using different image captioning models to detect the jewels from an image and generate a natural language description of the accessory. Then, this description is also utilized to classify the accessories at different levels of detail. The generated caption includes details such as the type of jewel, color, material, and design. To demonstrate the effectiveness of the proposed method in accurately recognizing different types of jewels, a dataset consisting of images of accessories belonging to jewelry stores in C\'ordoba (Spain) has been created. After testing the different image captioning architectures designed, the final model achieves a captioning accuracy of 95\%. The proposed methodology has the potential to be used in various applications such as jewelry e-commerce, inventory management or automatic jewels recognition to analyze people's tastes and social status.

Many applications must provide low-latency LLM service to users or risk unacceptable user experience. However, over-provisioning resources to serve fluctuating request patterns is often prohibitively expensive. In this work, we present a best-effort serving system that employs deep reinforcement learning to adjust service quality based on the task distribution and system load. Our best-effort system can maintain availability with over 10x higher client request rates, serves above 96% of peak performance 4.1x more often, and serves above 98% of peak performance 2.3x more often than static serving on unpredictable workloads. Our learned router is robust to shifts in both the arrival and task distribution. Compared to static serving, learned best-effort serving allows for cost-efficient serving through increased hardware utility. Additionally, we argue that learned best-effort LLM serving is applicable in wide variety of settings and provides application developers great flexibility to meet their specific needs.

Transformers have recently achieved state-of-the-art performance in speech separation. These models, however, are computationally demanding and require a lot of learnable parameters. This paper explores Transformer-based speech separation with a reduced computational cost. Our main contribution is the development of the Resource-Efficient Separation Transformer (RE-SepFormer), a self-attention-based architecture that reduces the computational burden in two ways. First, it uses non-overlapping blocks in the latent space. Second, it operates on compact latent summaries calculated from each chunk. The RE-SepFormer reaches a competitive performance on the popular WSJ0-2Mix and WHAM! datasets in both causal and non-causal settings. Remarkably, it scales significantly better than the previous Transformer-based architectures in terms of memory and inference time, making it more suitable for processing long mixtures.

Recommendation systems, for documents, have become tools to find relevant content on the Web. However, these systems have limitations when it comes to recommending documents in languages different from the query language, which means they might overlook resources in non-native languages. This research focuses on representing documents across languages by using Transformer Leveraged Document Representations (TLDRs) that are mapped to a cross-lingual domain. Four multilingual pre-trained transformer models (mBERT, mT5 XLM RoBERTa, ErnieM) were evaluated using three mapping methods across 20 language pairs representing combinations of five selected languages of the European Union. Metrics like Mate Retrieval Rate and Reciprocal Rank were used to measure the effectiveness of mapped TLDRs compared to non-mapped ones. The results highlight the power of cross-lingual representations achieved through pre-trained transformers and mapping approaches suggesting a promising direction for expanding beyond language connections, between two specific languages.

The prevalence of the powerful multilingual models, such as Whisper, has significantly advanced the researches on speech recognition. However, these models often struggle with handling the code-switching setting, which is essential in multilingual speech recognition. Recent studies have attempted to address this setting by separating the modules for different languages to ensure distinct latent representations for languages. Some other methods considered the switching mechanism based on language identification. In this study, a new attention-guided adaptation is proposed to conduct parameter-efficient learning for bilingual ASR. This method selects those attention heads in a model which closely express language identities and then guided those heads to be correctly attended with their corresponding languages. The experiments on the Mandarin-English code-switching speech corpus show that the proposed approach achieves a 14.2% mixed error rate, surpassing state-of-the-art method, where only 5.6% additional parameters over Whisper are trained.

北京阿比特科技有限公司