DNN-based watermarking methods are rapidly developing and delivering impressive performances. Recent advances achieve resolution-agnostic image watermarking by reducing the variant resolution watermarking problem to a fixed resolution watermarking problem. However, such a reduction process can potentially introduce artifacts and low robustness. To address this issue, we propose the first, to the best of our knowledge, Resolution-Agnostic Image WaterMarking (RAIMark) framework by watermarking the implicit neural representation (INR) of image. Unlike previous methods, our method does not rely on the previous reduction process by directly watermarking the continuous signal instead of image pixels, thus achieving resolution-agnostic watermarking. Precisely, given an arbitrary-resolution image, we fit an INR for the target image. As a continuous signal, such an INR can be sampled to obtain images with variant resolutions. Then, we quickly fine-tune the fitted INR to get a watermarked INR conditioned on a binary secret message. A pre-trained watermark decoder extracts the hidden message from any sampled images with arbitrary resolutions. By directly watermarking INR, we achieve resolution-agnostic watermarking with increased robustness. Extensive experiments show that our method outperforms previous methods with significant improvements: averagely improved bit accuracy by 7%$\sim$29%. Notably, we observe that previous methods are vulnerable to at least one watermarking attack (e.g. JPEG, crop, resize), while ours are robust against all watermarking attacks.
Generating accurate SQL according to natural language questions (text-to-SQL) is a long-standing challenge due to the complexities involved in user question understanding, database schema comprehension, and SQL generation. Conventional text-to-SQL systems, comprising human engineering and deep neural networks, have made substantial progress. Subsequently, pre-trained language models (PLMs) have been developed and utilized for text-to-SQL tasks, achieving promising performance. As modern databases become more complex, the corresponding user questions also grow more challenging, leading PLMs with limited comprehension capabilities to produce incorrect SQL. This necessitates more sophisticated and tailored optimization methods for PLMs, which, in turn, restricts the applications of PLM-based systems. Most recently, large language models (LLMs) have demonstrated significant capabilities in natural language understanding as the model scale remains increasing. Therefore, integrating the LLM-based implementation can bring unique opportunities, improvements, and solutions to text-to-SQL research. In this survey, we present a comprehensive review of LLM-based text-to-SQL. Specifically, we propose a brief overview of the technical challenges and the evolutionary process of text-to-SQL. Then, we provide a detailed introduction to the datasets and metrics designed to evaluate text-to-SQL systems. After that, we present a systematic analysis of recent advances in LLM-based text-to-SQL. Finally, we discuss the remaining challenges in this field and propose expectations for future research directions.
We present ConvoCache, a conversational caching system that solves the problem of slow and expensive generative AI models in spoken chatbots. ConvoCache finds a semantically similar prompt in the past and reuses the response. In this paper we evaluate ConvoCache on the DailyDialog dataset. We find that ConvoCache can apply a UniEval coherence threshold of 90% and respond to 89% of prompts using the cache with an average latency of 214ms, replacing LLM and voice synthesis that can take over 1s. To further reduce latency we test prefetching and find limited usefulness. Prefetching with 80% of a request leads to a 63% hit rate, and a drop in overall coherence. ConvoCache can be used with any chatbot to reduce costs by reducing usage of generative AI by up to 89%.
Recent advancements in data-driven approaches for remote photoplethysmography (rPPG) have significantly improved the accuracy of remote heart rate estimation. However, the performance of such approaches worsens considerably under video compression, which is nevertheless necessary to store and transmit video data efficiently. In this paper, we present a novel approach to address the impact of video compression on rPPG estimation, which leverages a pulse-signal magnification transformation to adapt compressed videos to an uncompressed data domain in which the rPPG signal is magnified. We validate the effectiveness of our model by exhaustive evaluations on two publicly available datasets, UCLA-rPPG and UBFC-rPPG, employing both intra- and cross-database performance at several compression rates. Additionally, we assess the robustness of our approach on two additional highly compressed and widely-used datasets, MAHNOB-HCI and COHFACE, which reveal outstanding heart rate estimation results.
Referring expression comprehension (REC) involves localizing a target instance based on a textual description. Recent advancements in REC have been driven by large multimodal models (LMMs) like CogVLM, which achieved 92.44% accuracy on RefCOCO. However, this study questions whether existing benchmarks such as RefCOCO, RefCOCO+, and RefCOCOg, capture LMMs' comprehensive capabilities. We begin with a manual examination of these benchmarks, revealing high labeling error rates: 14% in RefCOCO, 24% in RefCOCO+, and 5% in RefCOCOg, which undermines the authenticity of evaluations. We address this by excluding problematic instances and reevaluating several LMMs capable of handling the REC task, showing significant accuracy improvements, thus highlighting the impact of benchmark noise. In response, we introduce Ref-L4, a comprehensive REC benchmark, specifically designed to evaluate modern REC models. Ref-L4 is distinguished by four key features: 1) a substantial sample size with 45,341 annotations; 2) a diverse range of object categories with 365 distinct types and varying instance scales from 30 to 3,767; 3) lengthy referring expressions averaging 24.2 words; and 4) an extensive vocabulary comprising 22,813 unique words. We evaluate a total of 24 large models on Ref-L4 and provide valuable insights. The cleaned versions of RefCOCO, RefCOCO+, and RefCOCOg, as well as our Ref-L4 benchmark and evaluation code, are available at //github.com/JierunChen/Ref-L4.
Generating high-quality answers consistently by providing contextual information embedded in the prompt passed to the Large Language Model (LLM) is dependent on the quality of information retrieval. As the corpus of contextual information grows, the answer/inference quality of Retrieval Augmented Generation (RAG) based Question Answering (QA) systems declines. This work solves this problem by combining classical text classification with the Large Language Model (LLM) to enable quick information retrieval from the vector store and ensure the relevancy of retrieved information. For the same, this work proposes a new approach Context Augmented retrieval (CAR), where partitioning of vector database by real-time classification of information flowing into the corpus is done. CAR demonstrates good quality answer generation along with significant reduction in information retrieval and answer generation time.
Adversarial examples, designed to trick Artificial Neural Networks (ANNs) into producing wrong outputs, highlight vulnerabilities in these models. Exploring these weaknesses is crucial for developing defenses, and so, we propose a method to assess the adversarial robustness of image-classifying ANNs. The t-distributed Stochastic Neighbor Embedding (t-SNE) technique is used for visual inspection, and a metric, which compares the clean and perturbed embeddings, helps pinpoint weak spots in the layers. Analyzing two ANNs on CIFAR-10, one designed by humans and another via NeuroEvolution, we found that differences between clean and perturbed representations emerge early on, in the feature extraction layers, affecting subsequent classification. The findings with our metric are supported by the visual analysis of the t-SNE maps.
Despite significant advancements in text generation and reasoning, Large Language Models (LLMs) still face challenges in accurately performing complex arithmetic operations. To achieve accurate calculations, language model systems often enable LLMs to generate code for arithmetic operations. However, this approach compromises speed and security and, if finetuning is involved, risks the language model losing prior capabilities. We propose a framework that enables exact arithmetic in \textit{a single autoregressive step}, providing faster, more secure, and more interpretable LLM systems with arithmetic capabilities. We use the hidden states of an LLM to control a symbolic architecture which performs arithmetic. Our implementation using Llama 3 8B Instruct with OccamNet as a symbolic model (OccamLlama) achieves 100\% accuracy on single arithmetic operations ($+,-,\times,\div,\sin{},\cos{},\log{},\exp{},\sqrt{}$), outperforming GPT 4o and on par with GPT 4o using a code interpreter. OccamLlama also outperforms GPT 4o both with and without a code interpreter on mathematical problem solving benchmarks involving challenging arithmetic, thus enabling small LLMs to match the arithmetic performance of even much larger models. We will make our code public shortly.
Quadcopters have been studied for decades thanks to their maneuverability and capability of operating in a variety of circumstances. However, quadcopters suffer from dynamical nonlinearity, actuator saturation, as well as sensor noise that make it challenging and time consuming to obtain accurate dynamic models and achieve satisfactory control performance. Fortunately, deep reinforcement learning came and has shown significant potential in system modelling and control of autonomous multirotor aerial vehicles, with recent advancements in deployment, performance enhancement, and generalization. In this paper, an end-to-end deep reinforcement learning-based controller for quadcopters is proposed that is secure for real-world implementation, data-efficient, and free of human gain adjustments. First, a novel actor-critic-based architecture is designed to map the robot states directly to the motor outputs. Then, a quadcopter dynamics-based simulator was devised to facilitate the training of the controller policy. Finally, the trained policy is deployed on a real Crazyflie nano quadrotor platform, without any additional fine-tuning process. Experimental results show that the quadcopter exhibits satisfactory performance as it tracks a given complicated trajectory, which demonstrates the effectiveness and feasibility of the proposed method and signifies its capability in filling the simulation-to-reality gap.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.