Confidence intervals are a crucial building block in the analysis of various online learning problems. The analysis of kernel based bandit and reinforcement learning problems utilize confidence intervals applicable to the elements of a reproducing kernel Hilbert space (RKHS). However, the existing confidence bounds do not appear to be tight, resulting in suboptimal regret bounds. In fact, the existing regret bounds for several kernelized bandit algorithms (e.g., GP-UCB, GP-TS, and their variants) may fail to even be sublinear. It is unclear whether the suboptimal regret bound is a fundamental shortcoming of these algorithms or an artifact of the proof, and the main challenge seems to stem from the online (sequential) nature of the observation points. We formalize the question of online confidence intervals in the RKHS setting and overview the existing results.
The Shapley value is a game-theoretic notion for wealth distribution that is nowadays extensively used to explain complex data-intensive computation, for instance, in network analysis or machine learning. Recent theoretical works show that query evaluation over relational databases fits well in this explanation paradigm. Yet, these works fall short of providing practical solutions to the computational challenge inherent to the Shapley computation. We present in this paper two practically effective solutions for computing Shapley values in query answering. We start by establishing a tight theoretical connection to the extensively studied problem of query evaluation over probabilistic databases, which allows us to obtain a polynomial-time algorithm for the class of queries for which probability computation is tractable. We then propose a first practical solution for computing Shapley values that adopts tools from probabilistic query evaluation. In particular, we capture the dependence of query answers on input database facts using Boolean expressions (data provenance), and then transform it, via Knowledge Compilation, into a particular circuit form for which we devise an algorithm for computing the Shapley values. Our second practical solution is a faster yet inexact approach that transforms the provenance to a Conjunctive Normal Form and uses a heuristic to compute the Shapley values. Our experiments on TPC-H and IMDB demonstrate the practical effectiveness of our solutions.
Online reinforcement learning (RL) algorithms are often difficult to deploy in complex human-facing applications as they may learn slowly and have poor early performance. To address this, we introduce a practical algorithm for incorporating human insight to speed learning. Our algorithm, Constraint Sampling Reinforcement Learning (CSRL), incorporates prior domain knowledge as constraints/restrictions on the RL policy. It takes in multiple potential policy constraints to maintain robustness to misspecification of individual constraints while leveraging helpful ones to learn quickly. Given a base RL learning algorithm (ex. UCRL, DQN, Rainbow) we propose an upper confidence with elimination scheme that leverages the relationship between the constraints, and their observed performance, to adaptively switch among them. We instantiate our algorithm with DQN-type algorithms and UCRL as base algorithms, and evaluate our algorithm in four environments, including three simulators based on real data: recommendations, educational activity sequencing, and HIV treatment sequencing. In all cases, CSRL learns a good policy faster than baselines.
We consider the following problem: Given a set S of at most n elements from a universe of size m, represent it in memory as a bit string so that membership queries of the form "Is x in S?" can be answered by making at most t probes into the bit string. Let s(m,n,t) be the minimum number of bits needed by any such scheme. We obtain new upper bounds for s(m,n,t=2), which match or improve all the previously known bounds. We also consider the quantum version of this problem and obtain improved upper bounds.
This paper studies optimal motion planning subject to motion and environment uncertainties. By modeling the system as a probabilistic labeled Markov decision process (PL-MDP), the control objective is to synthesize a finite-memory policy, under which the agent satisfies complex high-level tasks expressed as linear temporal logic (LTL) with desired satisfaction probability. In particular, the cost optimization of the trajectory that satisfies infinite horizon tasks is considered, and the trade-off between reducing the expected mean cost and maximizing the probability of task satisfaction is analyzed. Instead of using traditional Rabin automata, the LTL formulas are converted to limit-deterministic B\"uchi automata (LDBA) with a reachability acceptance condition and a compact graph structure. The novelty of this work lies in considering the cases where LTL specifications can be potentially infeasible and developing a relaxed product MDP between PL-MDP and LDBA. The relaxed product MDP allows the agent to revise its motion plan whenever the task is not fully feasible and quantify the revised plan's violation measurement. A multi-objective optimization problem is then formulated to jointly consider the probability of task satisfaction, the violation with respect to original task constraints, and the implementation cost of the policy execution. The formulated problem can be solved via coupled linear programs. To the best of our knowledge, this work first bridges the gap between probabilistic planning revision of potential infeasible LTL specifications and optimal control synthesis of both plan prefix and plan suffix of the trajectory over the infinite horizons. Experimental results are provided to demonstrate the effectiveness of the proposed framework.
Let $Q_{n}^{r}$ be the graph with vertex set $\{-1,1\}^{n}$ in which two vertices are joined if their Hamming distance is at most $r$. The edge-isoperimetric problem for $Q_{n}^{r}$ is that: For every $(n,r,M)$ such that $1\le r\le n$ and $1\le M\le2^{n}$, determine the minimum edge-boundary size of a subset of vertices of $Q_{n}^{r}$ with a given size $M$. In this paper, we apply two different approaches to prove bounds for this problem. The first approach is a linear programming approach and the second is a probabilistic approach. Our bound derived by the first approach generalizes the tight bound for $M=2^{n-1}$ derived by Kahn, Kalai, and Linial in 1989. Moreover, our bound is also tight for $M=2^{n-2}$ and $r\le\frac{n}{2}-1$. Our bounds derived by the second approach are expressed in terms of the \emph{noise stability}, and they are shown to be asymptotically tight as $n\to\infty$ when $r=2\lfloor\frac{\beta n}{2}\rfloor+1$ and $M=\lfloor\alpha2^{n}\rfloor$ for fixed $\alpha,\beta\in(0,1)$, and is tight up to a factor $2$ when $r=2\lfloor\frac{\beta n}{2}\rfloor$ and $M=\lfloor\alpha2^{n}\rfloor$. In fact, the edge-isoperimetric problem is equivalent to a ball-noise stability problem which is a variant of the traditional (i.i.d.-) noise stability problem. Our results can be interpreted as bounds for the ball-noise stability problem.
We investigate online convex optimization in non-stationary environments and choose the \emph{dynamic regret} as the performance measure, defined as the difference between cumulative loss incurred by the online algorithm and that of any feasible comparator sequence. Let $T$ be the time horizon and $P_T$ be the path-length that essentially reflects the non-stationarity of environments, the state-of-the-art dynamic regret is $\mathcal{O}(\sqrt{T(1+P_T)})$. Although this bound is proved to be minimax optimal for convex functions, in this paper, we demonstrate that it is possible to further enhance the guarantee for some easy problem instances, particularly when online functions are smooth. Specifically, we propose novel online algorithms that can leverage smoothness and replace the dependence on $T$ in the dynamic regret by \emph{problem-dependent} quantities: the variation in gradients of loss functions, the cumulative loss of the comparator sequence, and the minimum of the previous two terms. These quantities are at most $\mathcal{O}(T)$ while could be much smaller in benign environments. Therefore, our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and meanwhile guarantee the same rate in the worst case. Notably, our algorithm requires only \emph{one} gradient per iteration, which shares the same gradient query complexity with the methods developed for optimizing the static regret. As a further application, we extend the results from the full-information setting to bandit convex optimization with two-point feedback and thereby attain the first problem-dependent dynamic regret for such bandit tasks.
In this paper, we are interested to an inverse Cauchy problem governed by the Stokes equation, called the data completion problem. It consists in determining the unspecified fluid velocity, or one of its components over a part of its boundary, by introducing given measurements on its remaining part. As it's known, this problem is one of the highly ill-posed problems in the Hadamard's sense \cite{had}, it is then an interesting challenge to carry out a numerical procedure for approximating their solutions, mostly in the particular case of noisy data. To solve this problem, we propose here a regularizing approach based on a coupled complex boundary method, originally proposed in \cite{source}, for solving an inverse source problem. We show the existence of the regularization optimization problem and prove the convergence of the subsequence of optimal solutions of Tikhonov regularization formulations to the solution of the Cauchy problem. Then we suggest the numerical approximation of this problem using the adjoint gradient technic and the finite element method of $P1-bubble/P1$ type. Finally, we provide some numerical results showing the accuracy, effectiveness, and robustness of the proposed approach.
This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.
In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.
Link prediction is critical for the application of incomplete knowledge graph (KG) in the downstream tasks. As a family of effective approaches for link predictions, embedding methods try to learn low-rank representations for both entities and relations such that the bilinear form defined therein is a well-behaved scoring function. Despite of their successful performances, existing bilinear forms overlook the modeling of relation compositions, resulting in lacks of interpretability for reasoning on KG. To fulfill this gap, we propose a new model called DihEdral, named after dihedral symmetry group. This new model learns knowledge graph embeddings that can capture relation compositions by nature. Furthermore, our approach models the relation embeddings parametrized by discrete values, thereby decrease the solution space drastically. Our experiments show that DihEdral is able to capture all desired properties such as (skew-) symmetry, inversion and (non-) Abelian composition, and outperforms existing bilinear form based approach and is comparable to or better than deep learning models such as ConvE.