亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Using Bayesian methods for extreme value analysis offers an alternative to frequentist ones, with several advantages such as easily dealing with parametric uncertainty or studying irregular models. However, computations can be challenging and the efficiency of algorithms can be altered by poor parametrization choices. The focus is on the Poisson process characterization of univariate extremes and outline two key benefits of an orthogonal parameterization. First, Markov chain Monte Carlo convergence is improved when applied on orthogonal parameters. This analysis relies on convergence diagnostics computed on several simulations. Second, orthogonalization also helps deriving Jeffreys and penalized complexity priors, and establishing posterior propriety thereof. The proposed framework is applied to return level estimation of Garonne flow data (France).

相關內容

Velocity limit (VL) has been widely adopted in many variants of particle swarm optimization (PSO) to prevent particles from searching outside the solution space. Several adaptive VL strategies have been introduced with which the performance of PSO can be improved. However, the existing adaptive VL strategies simply adjust their VL based on iterations, leading to unsatisfactory optimization results because of the incompatibility between VL and the current searching state of particles. To deal with this problem, a novel PSO variant with state-based adaptive velocity limit strategy (PSO-SAVL) is proposed. In the proposed PSO-SAVL, VL is adaptively adjusted based on the evolutionary state estimation (ESE) in which a high value of VL is set for global searching state and a low value of VL is set for local searching state. Besides that, limit handling strategies have been modified and adopted to improve the capability of avoiding local optima. The good performance of PSO-SAVL has been experimentally validated on a wide range of benchmark functions with 50 dimensions. The satisfactory scalability of PSO-SAVL in high-dimension and large-scale problems is also verified. Besides, the merits of the strategies in PSO-SAVL are verified in experiments. Sensitivity analysis for the relevant hyper-parameters in state-based adaptive VL strategy is conducted, and insights in how to select these hyper-parameters are also discussed.

Nonlinear extensions to the active subspaces method have brought remarkable results for dimension reduction in the parameter space and response surface design. We further develop a kernel-based nonlinear method. In particular we introduce it in a broader mathematical framework that contemplates also the reduction in parameter space of multivariate objective functions. The implementation is thoroughly discussed and tested on more challenging benchmarks than the ones already present in the literature, for which dimension reduction with active subspaces produces already good results. Finally, we show a whole pipeline for the design of response surfaces with the new methodology in the context of a parametric CFD application solved with the Discontinuous Galerkin method.

Scientific Machine Learning (SciML) has advanced recently across many different areas in computational science and engineering. The objective is to integrate data and physics seamlessly without the need of employing elaborate and computationally taxing data assimilation schemes. However, preprocessing, problem formulation, code generation, postprocessing and analysis are still time consuming and may prevent SciML from wide applicability in industrial applications and in digital twin frameworks. Here, we integrate the various stages of SciML under the umbrella of ChatGPT, to formulate MyCrunchGPT, which plays the role of a conductor orchestrating the entire workflow of SciML based on simple prompts by the user. Specifically, we present two examples that demonstrate the potential use of MyCrunchGPT in optimizing airfoils in aerodynamics, and in obtaining flow fields in various geometries in interactive mode, with emphasis on the validation stage. To demonstrate the flow of the MyCrunchGPT, and create an infrastructure that can facilitate a broader vision, we built a webapp based guided user interface, that includes options for a comprehensive summary report. The overall objective is to extend MyCrunchGPT to handle diverse problems in computational mechanics, design, optimization and controls, and general scientific computing tasks involved in SciML, hence using it as a research assistant tool but also as an educational tool. While here the examples focus in fluid mechanics, future versions will target solid mechanics and materials science, geophysics, systems biology and bioinformatics.

Quantum computers possess the potential to process data using a remarkably reduced number of qubits compared to conventional bits, as per theoretical foundations. However, recent experiments have indicated that the practical feasibility of retrieving an image from its quantum encoded version is currently limited to very small image sizes. Despite this constraint, variational quantum machine learning algorithms can still be employed in the current noisy intermediate scale quantum (NISQ) era. An example is a hybrid quantum machine learning approach for edge detection. In our study, we present an application of quantum transfer learning for detecting cracks in gray value images. We compare the performance and training time of PennyLane's standard qubits with IBM's qasm\_simulator and real backends, offering insights into their execution efficiency.

Businesses have sought out new solutions to provide support and improve customer satisfaction as more products and services have become interconnected digitally. There is an inherent need for businesses to provide or outsource fast, efficient and knowledgeable support to remain competitive. Support solutions are also advancing with technologies, including use of social media, Artificial Intelligence (AI), Machine Learning (ML) and remote device connectivity to better support customers. Customer support operators are trained to utilise these technologies to provide better customer outreach and support for clients in remote areas. Interconnectivity of products and support systems provide businesses with potential international clients to expand their product market and business scale. This paper reports the possible AI applications in customer support, done in collaboration with the Knowledge Transfer Partnership (KTP) program between Birmingham City University and a company that handles customer service systems for businesses outsourcing customer support across a wide variety of business sectors. This study explored several approaches to accurately predict customers' intent using both labelled and unlabelled textual data. While some approaches showed promise in specific datasets, the search for a single, universally applicable approach continues. The development of separate pipelines for intent detection and discovery has led to improved accuracy rates in detecting known intents, while further work is required to improve the accuracy of intent discovery for unknown intents.

A non-intrusive proper generalized decomposition (PGD) strategy, coupled with an overlapping domain decomposition (DD) method, is proposed to efficiently construct surrogate models of parametric linear elliptic problems. A parametric multi-domain formulation is presented, with local subproblems featuring arbitrary Dirichlet interface conditions represented through the traces of the finite element functions used for spatial discretization at the subdomain level, with no need for additional auxiliary basis functions. The linearity of the operator is exploited to devise low-dimensional problems with only few active boundary parameters. An overlapping Schwarz method is used to glue the local surrogate models, solving a linear system for the nodal values of the parametric solution at the interfaces, without introducing Lagrange multipliers to enforce the continuity in the overlapping region. The proposed DD-PGD methodology relies on a fully algebraic formulation allowing for real-time computation based on the efficient interpolation of the local surrogate models in the parametric space, with no additional problems to be solved during the execution of the Schwarz algorithm. Numerical results for parametric diffusion and convection-diffusion problems are presented to showcase the accuracy of the DD-PGD approach, its robustness in different regimes and its superior performance with respect to standard high-fidelity DD methods.

For exchangeable data, mixture models are an extremely useful tool for density estimation due to their attractive balance between smoothness and flexibility. When additional covariate information is present, mixture models can be extended for flexible regression by modeling the mixture parameters, namely the weights and atoms, as functions of the covariates. These types of models are interpretable and highly flexible, allowing non only the mean but the whole density of the response to change with the covariates, which is also known as density regression. This article reviews Bayesian covariate-dependent mixture models and highlights which data types can be accommodated by the different models along with the methodological and applied areas where they have been used. In addition to being highly flexible, these models are also numerous; we focus on nonparametric constructions and broadly organize them into three categories: 1) joint models of the responses and covariates, 2) conditional models with single-weights and covariate-dependent atoms, and 3) conditional models with covariate-dependent weights. The diversity and variety of the available models in the literature raises the question of how to choose among them for the application at hand. We attempt to shed light on this question through a careful analysis of the predictive equations for the conditional mean and density function as well as predictive comparisons in three simulated data examples.

Bayesian inference has widely acknowledged advantages in many problems, but it can also be unreliable if the model is misspecified. Bayesian modular inference is concerned with inference in complex models which have been specified through a collection of coupled sub-models. The sub-models are called modules in the literature, and they often arise from modeling different data sources, or from combining domain knowledge from different disciplines. When some modules are misspecified, cutting feedback is a widely used Bayesian modular inference method which ensures that information from suspect model components is not used in making inferences about parameters in correctly specified modules. However, in general settings it is difficult to decide when this ``cut posterior'' is preferable to the exact posterior. When misspecification is not severe, cutting feedback may increase the uncertainty in Bayesian posterior inference greatly without reducing estimation bias substantially. This motivates semi-modular inference methods, which avoid the binary cut of cutting feedback approaches. In this work, using a local model misspecification framework, we provide the first precise formulation of the the bias-variance trade-off that has motivated the literature on semi-modular inference. We then implement a mixture-based semi-modular inference approach, demonstrating theoretically that it delivers inferences that are more accurate, in terms of a user-defined loss function, than if either the cut or full posterior were used by themselves. The new method is demonstrated in a number of applications.

Monte Carlo methods represent a cornerstone of computer science. They allow to sample high dimensional distribution functions in an efficient way. In this paper we consider the extension of Automatic Differentiation (AD) techniques to Monte Carlo process, addressing the problem of obtaining derivatives (and in general, the Taylor series) of expectation values. Borrowing ideas from the lattice field theory community, we examine two approaches. One is based on reweighting while the other represents an extension of the Hamiltonian approach typically used by the Hybrid Monte Carlo (HMC) and similar algorithms. We show that the Hamiltonian approach can be understood as a change of variables of the reweighting approach, resulting in much reduced variances of the coefficients of the Taylor series. This work opens the door to find other variance reduction techniques for derivatives of expectation values.

Modern semiconductor manufacturing involves intricate production processes consisting of hundreds of operations, which can take several months from lot release to completion. The high-tech machines used in these processes are diverse, operate on individual wafers, lots, or batches in multiple stages, and necessitate product-specific setups and specialized maintenance procedures. This situation is different from traditional job-shop scheduling scenarios, which have less complex production processes and machines, and mainly focus on solving highly combinatorial but abstract scheduling problems. In this work, we address the scheduling of realistic semiconductor manufacturing processes by modeling their specific requirements using hybrid Answer Set Programming with difference logic, incorporating flexible machine processing, setup, batching and maintenance operations. Unlike existing methods that schedule semiconductor manufacturing processes locally with greedy heuristics or by independently optimizing specific machine group allocations, we examine the potentials of large-scale scheduling subject to multiple optimization objectives.

北京阿比特科技有限公司