亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present the analysis of the topological graph descriptor Local Degree Profile (LDP), which forms a widely used structural baseline for graph classification. Our study focuses on model evaluation in the context of the recently developed fair evaluation framework, which defines rigorous routines for model selection and evaluation for graph classification, ensuring reproducibility and comparability of the results. Based on the obtained insights, we propose a new baseline algorithm called Local Topological Profile (LTP), which extends LDP by using additional centrality measures and local vertex descriptors. The new approach provides the results outperforming or very close to the latest GNNs for all datasets used. Specifically, state-of-the-art results were obtained for 4 out of 9 benchmark datasets. We also consider computational aspects of LDP-based feature extraction and model construction to propose practical improvements affecting execution speed and scalability. This allows for handling modern, large datasets and extends the portfolio of benchmarks used in graph representation learning. As the outcome of our work, we obtained LTP as a simple to understand, fast and scalable, still robust baseline, capable of outcompeting modern graph classification models such as Graph Isomorphism Network (GIN). We provide open-source implementation at \href{//github.com/j-adamczyk/LTP}{GitHub}.

相關內容

Temporal Graph Learning, which aims to model the time-evolving nature of graphs, has gained increasing attention and achieved remarkable performance recently. However, in reality, graph structures are often incomplete and noisy, which hinders temporal graph networks (TGNs) from learning informative representations. Graph contrastive learning uses data augmentation to generate plausible variations of existing data and learn robust representations. However, rule-based augmentation approaches may be suboptimal as they lack learnability and fail to leverage rich information from downstream tasks. To address these issues, we propose a Time-aware Graph Structure Learning (TGSL) approach via sequence prediction on temporal graphs, which learns better graph structures for downstream tasks through adding potential temporal edges. In particular, it predicts time-aware context embedding based on previously observed interactions and uses the Gumble-Top-K to select the closest candidate edges to this context embedding. Additionally, several candidate sampling strategies are proposed to ensure both efficiency and diversity. Furthermore, we jointly learn the graph structure and TGNs in an end-to-end manner and perform inference on the refined graph. Extensive experiments on temporal link prediction benchmarks demonstrate that TGSL yields significant gains for the popular TGNs such as TGAT and GraphMixer, and it outperforms other contrastive learning methods on temporal graphs. We will release the code in the future.

Data valuation has become an increasingly significant discipline in data science due to the economic value of data. In the context of machine learning (ML), data valuation methods aim to equitably measure the contribution of each data point to the utility of an ML model. One prevalent method is Shapley value, which helps identify data points that are beneficial or detrimental to an ML model. However, traditional Shapley-based data valuation methods may not effectively distinguish between beneficial and detrimental training data points for probabilistic classifiers. In this paper, we propose Probabilistic Shapley (P-Shapley) value by constructing a probability-wise utility function that leverages the predicted class probabilities of probabilistic classifiers rather than binarized prediction results in the traditional Shapley value. We also offer several activation functions for confidence calibration to effectively quantify the marginal contribution of each data point to the probabilistic classifiers. Extensive experiments on four real-world datasets demonstrate the effectiveness of our proposed P-Shapley value in evaluating the importance of data for building a high-usability and trustworthy ML model.

This study demonstrates the existence of a testable condition for the identification of the causal effect of a treatment on an outcome in observational data, which relies on two sets of variables: observed covariates to be controlled for and a suspected instrument. Under a causal structure commonly found in empirical applications, the testable conditional independence of the suspected instrument and the outcome given the treatment and the covariates has two implications. First, the instrument is valid, i.e. it does not directly affect the outcome (other than through the treatment) and is unconfounded conditional on the covariates. Second, the treatment is unconfounded conditional on the covariates such that the treatment effect is identified. We suggest tests of this conditional independence based on machine learning methods that account for covariates in a data-driven way and investigate their asymptotic behavior and finite sample performance in a simulation study. We also apply our testing approach to evaluating the impact of fertility on female labor supply when using the sibling sex ratio of the first two children as supposed instrument, which by and large points to a violation of our testable implication for the moderate set of socio-economic covariates considered.

This paper addresses significant obstacles that arise from the widespread use of machine learning models in the insurance industry, with a specific focus on promoting fairness. The initial challenge lies in effectively leveraging unlabeled data in insurance while reducing the labeling effort and emphasizing data relevance through active learning techniques. The paper explores various active learning sampling methodologies and evaluates their impact on both synthetic and real insurance datasets. This analysis highlights the difficulty of achieving fair model inferences, as machine learning models may replicate biases and discrimination found in the underlying data. To tackle these interconnected challenges, the paper introduces an innovative fair active learning method. The proposed approach samples informative and fair instances, achieving a good balance between model predictive performance and fairness, as confirmed by numerical experiments on insurance datasets.

Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Graph classification aims to perform accurate information extraction and classification over graphstructured data. In the past few years, Graph Neural Networks (GNNs) have achieved satisfactory performance on graph classification tasks. However, most GNNs based methods focus on designing graph convolutional operations and graph pooling operations, overlooking that collecting or labeling graph-structured data is more difficult than grid-based data. We utilize meta-learning for fewshot graph classification to alleviate the scarce of labeled graph samples when training new tasks.More specifically, to boost the learning of graph classification tasks, we leverage GNNs as graph embedding backbone and meta-learning as training paradigm to capture task-specific knowledge rapidly in graph classification tasks and transfer them to new tasks. To enhance the robustness of meta-learner, we designed a novel step controller driven by Reinforcement Learning. The experiments demonstrate that our framework works well compared to baselines.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司