Blockchain's decentralization, transparency, and tamper-resistance properties have facilitated the system's use in various application fields. However, the low throughput and high confirmation latency hinder the widespread adoption of Blockchain. Many solutions have been proposed to address these issues, including first-layer solutions (or on-chain solutions) and second-layer solutions (or off-chain solutions). Among the proposed solutions, the blockchain sharding system is the most scalable one, where the nodes in the network are divided into several groups. The nodes in different shards work in parallel to validate the transactions and add them to the blocks, and in such a way, the throughput increases significantly. However, previous works have not adequately summarized the latest achievements in blockchain sharding, nor have they fully showcased its state-of-the-art. Our study provides a systemization of knowledge of public blockchain sharding, including the core components of sharding systems, challenges, limitations, and mechanisms of the latest sharding protocols. We also compare their performance and discuss current constraints and future research directions.
In the realm of motion generation, the creation of long-duration, high-quality motion sequences remains a significant challenge. This paper presents our groundbreaking work on "Infinite Motion", a novel approach that leverages long text to extended motion generation, effectively bridging the gap between short and long-duration motion synthesis. Our core insight is the strategic extension and reassembly of existing high-quality text-motion datasets, which has led to the creation of a novel benchmark dataset to facilitate the training of models for extended motion sequences. A key innovation of our model is its ability to accept arbitrary lengths of text as input, enabling the generation of motion sequences tailored to specific narratives or scenarios. Furthermore, we incorporate the timestamp design for text which allows precise editing of local segments within the generated sequences, offering unparalleled control and flexibility in motion synthesis. We further demonstrate the versatility and practical utility of "Infinite Motion" through three specific applications: natural language interactive editing, motion sequence editing within long sequences and splicing of independent motion sequences. Each application highlights the adaptability of our approach and broadens the spectrum of possibilities for research and development in motion generation. Through extensive experiments, we demonstrate the superior performance of our model in generating long sequence motions compared to existing methods.Project page: //shuochengzhai.github.io/Infinite-motion.github.io/
In the realm of personalized recommender systems, the challenge of adapting to evolving user preferences and the continuous influx of new users and items is paramount. Conventional models, typically reliant on a static training-test approach, struggle to keep pace with these dynamic demands. Streaming recommendation, particularly through continual graph learning, has emerged as a novel solution. However, existing methods in this area either rely on historical data replay, which is increasingly impractical due to stringent data privacy regulations; or are inability to effectively address the over-stability issue; or depend on model-isolation and expansion strategies. To tackle these difficulties, we present GPT4Rec, a Graph Prompt Tuning method for streaming Recommendation. Given the evolving user-item interaction graph, GPT4Rec first disentangles the graph patterns into multiple views. After isolating specific interaction patterns and relationships in different views, GPT4Rec utilizes lightweight graph prompts to efficiently guide the model across varying interaction patterns within the user-item graph. Firstly, node-level prompts are employed to instruct the model to adapt to changes in the attributes or properties of individual nodes within the graph. Secondly, structure-level prompts guide the model in adapting to broader patterns of connectivity and relationships within the graph. Finally, view-level prompts are innovatively designed to facilitate the aggregation of information from multiple disentangled views. These prompt designs allow GPT4Rec to synthesize a comprehensive understanding of the graph, ensuring that all vital aspects of the user-item interactions are considered and effectively integrated. Experiments on four diverse real-world datasets demonstrate the effectiveness and efficiency of our proposal.
Large language models (LLMs) enable unparalleled few- and zero-shot reasoning capabilities but at a high computational footprint. A growing assortment of methods for compression promises to reduce the computational burden of LLMs in deployment, but so far, only quantization approaches have been demonstrated to be effective for LLM compression while maintaining zero-shot performance. A critical step in the compression process, the pretrain-then-finetune paradigm, has largely been overlooked when adapting existing pruning strategies to LLMs or proposing new ones. In this work, we show that embarrassingly simple layer pruning coupled with an extended language model pretraining as the finetuning phase produces state-of-the-art results against structured and even semi-structured compression of models at a 7B scale while being more inference efficient. We call this method LayerChop, where we deterministically remove layers from a model followed by task-agnostic finetuning of the remaining weights by continued self-supervised pretraining. At this scale, we also show how distillation, which has been super effective in task-agnostic compression of smaller BERT-style models, becomes inefficient against our simple pruning technique.
Large language models (LLMs) have achieved superior performance in powering text-based AI agents, endowing them with decision-making and reasoning abilities akin to humans. Concurrently, there is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain. This extension enables AI agents to interpret and respond to diverse multimodal user queries, thereby handling more intricate and nuanced tasks. In this paper, we conduct a systematic review of LLM-driven multimodal agents, which we refer to as large multimodal agents ( LMAs for short). First, we introduce the essential components involved in developing LMAs and categorize the current body of research into four distinct types. Subsequently, we review the collaborative frameworks integrating multiple LMAs , enhancing collective efficacy. One of the critical challenges in this field is the diverse evaluation methods used across existing studies, hindering effective comparison among different LMAs . Therefore, we compile these evaluation methodologies and establish a comprehensive framework to bridge the gaps. This framework aims to standardize evaluations, facilitating more meaningful comparisons. Concluding our review, we highlight the extensive applications of LMAs and propose possible future research directions. Our discussion aims to provide valuable insights and guidelines for future research in this rapidly evolving field. An up-to-date resource list is available at //github.com/jun0wanan/awesome-large-multimodal-agents.
Within recent times, cybercriminals have curated a variety of organised and resolute cyber attacks within a range of cyber systems, leading to consequential ramifications to private and governmental institutions. Current security-based automation and orchestrations focus on automating fixed purpose and hard-coded solutions, which are easily surpassed by modern-day cyber attacks. Research within Automated Cyber Defence will allow the development and enabling intelligence response by autonomously defending networked systems through sequential decision-making agents. This article comprehensively elaborates the developments within Automated Cyber Defence through a requirement analysis divided into two sub-areas, namely, automated defence and attack agents and Autonomous Cyber Operation (ACO) Gyms. The requirement analysis allows the comparison of automated agents and highlights the importance of ACO Gyms for their continual development. The requirement analysis is also used to critique ACO Gyms with an overall aim to develop them for deploying automated agents within real-world networked systems. Relevant future challenges were addressed from the overall analysis to accelerate development within the area of Automated Cyber Defence.
Over the last decade, the use of autonomous drone systems for surveying, search and rescue, or last-mile delivery has increased exponentially. With the rise of these applications comes the need for highly robust, safety-critical algorithms which can operate drones in complex and uncertain environments. Additionally, flying fast enables drones to cover more ground which in turn increases productivity and further strengthens their use case. One proxy for developing algorithms used in high-speed navigation is the task of autonomous drone racing, where researchers program drones to fly through a sequence of gates and avoid obstacles as quickly as possible using onboard sensors and limited computational power. Speeds and accelerations exceed over 80 kph and 4 g respectively, raising significant challenges across perception, planning, control, and state estimation. To achieve maximum performance, systems require real-time algorithms that are robust to motion blur, high dynamic range, model uncertainties, aerodynamic disturbances, and often unpredictable opponents. This survey covers the progression of autonomous drone racing across model-based and learning-based approaches. We provide an overview of the field, its evolution over the years, and conclude with the biggest challenges and open questions to be faced in the future.
Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.