X-ray polarimetry will soon open a new window on the high energy universe with the launch of NASA's Imaging X-ray Polarimetry Explorer (IXPE). Polarimeters are currently limited by their track reconstruction algorithms, which typically use linear estimators and do not consider individual event quality. We present a modern deep learning method for maximizing the sensitivity of X-ray telescopic observations with imaging polarimeters, with a focus on the gas pixel detectors (GPDs) to be flown on IXPE. We use a weighted maximum likelihood combination of predictions from a deep ensemble of ResNets, trained on Monte Carlo event simulations. We derive and apply the optimal event weighting for maximizing the polarization signal-to-noise ratio (SNR) in track reconstruction algorithms. For typical power-law source spectra, our method improves on the current state of the art, providing a ~40% decrease in required exposure times for a given SNR.
From the sampling of data to the initialisation of parameters, randomness is ubiquitous in modern Machine Learning practice. Understanding the statistical fluctuations engendered by the different sources of randomness in prediction is therefore key to understanding robust generalisation. In this manuscript we develop a quantitative and rigorous theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features in high-dimensions. In particular, we provide a complete description of the asymptotic joint distribution of the empirical risk minimiser for generic convex loss and regularisation in the high-dimensional limit. Our result encompasses a rich set of classification and regression tasks, such as the lazy regime of overparametrised neural networks, or equivalently the random features approximation of kernels. While allowing to study directly the mitigating effect of ensembling (or bagging) on the bias-variance decomposition of the test error, our analysis also helps disentangle the contribution of statistical fluctuations, and the singular role played by the interpolation threshold that are at the roots of the "double-descent" phenomenon.
Ensemble Kalman inversion (EKI) is a technique for the numerical solution of inverse problems. A great advantage of the EKI's ensemble approach is that derivatives are not required in its implementation. But theoretically speaking, EKI's ensemble size needs to surpass the dimension of the problem. This is because of EKI's "subspace property", i.e., that the EKI solution is a linear combination of the initial ensemble it starts off with. We show that the ensemble can break out of this initial subspace when "localization" is applied. In essence, localization enforces an assumed correlation structure onto the problem, and is heavily used in ensemble Kalman filtering and data assimilation. We describe and analyze how to apply localization to the EKI, and how localization helps the EKI ensemble break out of the initial subspace. Specifically, we show that the localized EKI (LEKI) ensemble will collapse to a single point (as intended) and that the LEKI ensemble mean will converge to the global optimum at a sublinear rate. Under strict assumptions on the localization procedure and observation process, we further show that the data misfit decays uniformly. We illustrate our ideas and theoretical developments with numerical examples with simplified toy problems, a Lorenz model, and an inversion of electromagnetic data, where some of our mathematical assumptions may only be approximately valid.
Using Neuroevolution combined with Novelty Search to promote behavioural diversity is capable of constructing high-performing ensembles for classification. However, using gradient descent to train evolved architectures during the search can be computationally prohibitive. Here we propose a method to overcome this limitation by using a surrogate model which estimates the behavioural distance between two neural network architectures required to calculate the sparseness term in Novelty Search. We demonstrate a speedup of 10 times over previous work and significantly improve on previous reported results on three benchmark datasets from Computer Vision -- CIFAR-10, CIFAR-100, and SVHN. This results from the expanded architecture search space facilitated by using a surrogate. Our method represents an improved paradigm for implementing horizontal scaling of learning algorithms by making an explicit search for diversity considerably more tractable for the same bounded resources.
This is an extended abstract for a presentation at The 17th International Conference on CUPUM - Computational Urban Planning and Urban Management in June 2021. This study presents an interdisciplinary synthesis of the state-of-the-art approaches in computer vision technologies to extract built environment features that could improve the robustness of empirical research in planning. We discussed the findings from the review of studies in both planning and computer science.
Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task which aims to extract the aspects from sentences and identify their corresponding sentiments. Aspect term extraction (ATE) is the crucial step for ABSA. Due to the expensive annotation for aspect terms, we often lack labeled target domain data for fine-tuning. To address this problem, many approaches have been proposed recently to transfer common knowledge in an unsupervised way, but such methods have too many modules and require expensive multi-stage preprocessing. In this paper, we propose a simple but effective technique based on mutual information maximization, which can serve as an additional component to enhance any kind of model for cross-domain ABSA and ATE. Furthermore, we provide some analysis of this approach. Experiment results show that our proposed method outperforms the state-of-the-art methods for cross-domain ABSA by 4.32% Micro-F1 on average over 10 different domain pairs. Apart from that, our method can be extended to other sequence labeling tasks, such as named entity recognition (NER).
Learning a graph topology to reveal the underlying relationship between data entities plays an important role in various machine learning and data analysis tasks. Under the assumption that structured data vary smoothly over a graph, the problem can be formulated as a regularised convex optimisation over a positive semidefinite cone and solved by iterative algorithms. Classic methods require an explicit convex function to reflect generic topological priors, e.g. the $\ell_1$ penalty for enforcing sparsity, which limits the flexibility and expressiveness in learning rich topological structures. We propose to learn a mapping from node data to the graph structure based on the idea of learning to optimise (L2O). Specifically, our model first unrolls an iterative primal-dual splitting algorithm into a neural network. The key structural proximal projection is replaced with a variational autoencoder that refines the estimated graph with enhanced topological properties. The model is trained in an end-to-end fashion with pairs of node data and graph samples. Experiments on both synthetic and real-world data demonstrate that our model is more efficient than classic iterative algorithms in learning a graph with specific topological properties.
Network embedding has attracted considerable research attention recently. However, the existing methods are incapable of handling billion-scale networks, because they are computationally expensive and, at the same time, difficult to be accelerated by distributed computing schemes. To address these problems, we propose RandNE, a novel and simple billion-scale network embedding method. Specifically, we propose a Gaussian random projection approach to map the network into a low-dimensional embedding space while preserving the high-order proximities between nodes. To reduce the time complexity, we design an iterative projection procedure to avoid the explicit calculation of the high-order proximities. Theoretical analysis shows that our method is extremely efficient, and friendly to distributed computing schemes without any communication cost in the calculation. We demonstrate the efficacy of RandNE over state-of-the-art methods in network reconstruction and link prediction tasks on multiple datasets with different scales, ranging from thousands to billions of nodes and edges.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.
Partial person re-identification (re-id) is a challenging problem, where only several partial observations (images) of people are available for matching. However, few studies have provided flexible solutions to identifying a person in an image containing arbitrary part of the body. In this paper, we propose a fast and accurate matching method to address this problem. The proposed method leverages Fully Convolutional Network (FCN) to generate fix-sized spatial feature maps such that pixel-level features are consistent. To match a pair of person images of different sizes, a novel method called Deep Spatial feature Reconstruction (DSR) is further developed to avoid explicit alignment. Specifically, DSR exploits the reconstructing error from popular dictionary learning models to calculate the similarity between different spatial feature maps. In that way, we expect that the proposed FCN can decrease the similarity of coupled images from different persons and increase that from the same person. Experimental results on two partial person datasets demonstrate the efficiency and effectiveness of the proposed method in comparison with several state-of-the-art partial person re-id approaches. Additionally, DSR achieves competitive results on a benchmark person dataset Market1501 with 83.58\% Rank-1 accuracy.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.