亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantile regression is increasingly encountered in modern big data applications due to its robustness and flexibility. We consider the scenario of learning the conditional quantiles of a specific target population when the available data may go beyond the target and be supplemented from other sources that possibly share similarities with the target. A crucial question is how to properly distinguish and utilize useful information from other sources to improve the quantile estimation and inference at the target. We develop transfer learning methods for high-dimensional quantile regression by detecting informative sources whose models are similar to the target and utilizing them to improve the target model. We show that under reasonable conditions, the detection of the informative sources based on sample splitting is consistent. Compared to the naive estimator with only the target data, the transfer learning estimator achieves a much lower error rate as a function of the sample sizes, the signal-to-noise ratios, and the similarity measures among the target and the source models. Extensive simulation studies demonstrate the superiority of our proposed approach. We apply our methods to tackle the problem of detecting hard-landing risk for flight safety and show the benefits and insights gained from transfer learning of three different types of airplanes: Boeing 737, Airbus A320, and Airbus A380.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Learning · 深度強化學習 · 樣例 · 噪聲 ·
2023 年 2 月 14 日

Deep Reinforcement Learning (DRL) policies have been shown to be vulnerable to small adversarial noise in observations. Such adversarial noise can have disastrous consequences in safety-critical environments. For instance, a self-driving car receiving adversarially perturbed sensory observations about nearby signs (e.g., a stop sign physically altered to be perceived as a speed limit sign) or objects (e.g., cars altered to be recognized as trees) can be fatal. Existing approaches for making RL algorithms robust to an observation-perturbing adversary have focused on reactive approaches that iteratively improve against adversarial examples generated at each iteration. While such approaches have been shown to provide improvements over regular RL methods, they are reactive and can fare significantly worse if certain categories of adversarial examples are not generated during training. To that end, we pursue a more proactive approach that relies on directly optimizing a well-studied robustness measure, regret instead of expected value. We provide a principled approach that minimizes maximum regret over a "neighborhood" of observations to the received "observation". Our regret criterion can be used to modify existing value- and policy-based Deep RL methods. We demonstrate that our approaches provide a significant improvement in performance across a wide variety of benchmarks against leading approaches for robust Deep RL.

We provide uniform confidence bands for kernel ridge regression (KRR), with finite sample guarantees. KRR is ubiquitous, yet--to our knowledge--this paper supplies the first exact, uniform confidence bands for KRR in the non-parametric regime where the regularization parameter $\lambda$ converges to 0, for general data distributions. Our proposed uniform confidence band is based on a new, symmetrized multiplier bootstrap procedure with a closed form solution, which allows for valid uncertainty quantification without assumptions on the bias. To justify the procedure, we derive non-asymptotic, uniform Gaussian and bootstrap couplings for partial sums in a reproducing kernel Hilbert space (RKHS) with bounded kernel. Our results imply strong approximation for empirical processes indexed by the RKHS unit ball, with sharp, logarithmic dependence on the covering number.

State-of-the-art parametric and non-parametric style transfer approaches are prone to either distorted local style patterns due to global statistics alignment, or unpleasing artifacts resulting from patch mismatching. In this paper, we study a novel semi-parametric neural style transfer framework that alleviates the deficiency of both parametric and non-parametric stylization. The core idea of our approach is to establish accurate and fine-grained content-style correspondences using graph neural networks (GNNs). To this end, we develop an elaborated GNN model with content and style local patches as the graph vertices. The style transfer procedure is then modeled as the attention-based heterogeneous message passing between the style and content nodes in a learnable manner, leading to adaptive many-to-one style-content correlations at the local patch level. In addition, an elaborated deformable graph convolutional operation is introduced for cross-scale style-content matching. Experimental results demonstrate that the proposed semi-parametric image stylization approach yields encouraging results on the challenging style patterns, preserving both global appearance and exquisite details. Furthermore, by controlling the number of edges at the inference stage, the proposed method also triggers novel functionalities like diversified patch-based stylization with a single model.

A wide spectrum of design and decision problems, including parameter tuning, A/B testing and drug design, intrinsically are instances of black-box optimization. Bayesian optimization (BO) is a powerful tool that models and optimizes such expensive "black-box" functions. However, at the beginning of optimization, vanilla Bayesian optimization methods often suffer from slow convergence issue due to inaccurate modeling based on few trials. To address this issue, researchers in the BO community propose to incorporate the spirit of transfer learning to accelerate optimization process, which could borrow strength from the past tasks (source tasks) to accelerate the current optimization problem (target task). This survey paper first summarizes transfer learning methods for Bayesian optimization from four perspectives: initial points design, search space design, surrogate model, and acquisition function. Then it highlights its methodological aspects and technical details for each approach. Finally, it showcases a wide range of applications and proposes promising future directions.

In this paper, we study the Tiered Reinforcement Learning setting, a parallel transfer learning framework, where the goal is to transfer knowledge from the low-tier (source) task to the high-tier (target) task to reduce the exploration risk of the latter while solving the two tasks in parallel. Unlike previous work, we do not assume the low-tier and high-tier tasks share the same dynamics or reward functions, and focus on robust knowledge transfer without prior knowledge on the task similarity. We identify a natural and necessary condition called the "Optimal Value Dominance" for our objective. Under this condition, we propose novel online learning algorithms such that, for the high-tier task, it can achieve constant regret on partial states depending on the task similarity and retain near-optimal regret when the two tasks are dissimilar, while for the low-tier task, it can keep near-optimal without making sacrifice. Moreover, we further study the setting with multiple low-tier tasks, and propose a novel transfer source selection mechanism, which can ensemble the information from all low-tier tasks and allow provable benefits on a much larger state-action space.

When estimating a Global Average Treatment Effect (GATE) under network interference, units can have widely different relationships to the treatment depending on a combination of the structure of their network neighborhood, the structure of the interference mechanism, and how the treatment was distributed in their neighborhood. In this work, we introduce a sequential procedure to generate and select graph- and treatment-based covariates for GATE estimation under regression adjustment. We show that it is possible to simultaneously achieve low bias and considerably reduce variance with such a procedure. To tackle inferential complications caused by our feature generation and selection process, we introduce a way to construct confidence intervals based on a block bootstrap. We illustrate that our selection procedure and subsequent estimator can achieve good performance in terms of root mean squared error in several semi-synthetic experiments with Bernoulli designs, comparing favorably to an oracle estimator that takes advantage of regression adjustments for the known underlying interference structure. We apply our method to a real world experimental dataset with strong evidence of interference and demonstrate that it can estimate the GATE reasonably well without knowing the interference process a priori.

While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

北京阿比特科技有限公司