Mobile edge computing (MEC) is powerful to alleviate the heavy computing tasks in integrated sensing and communication (ISAC) systems. In this paper, we investigate joint beamforming and offloading design in a three-tier integrated sensing, communication and computation (ISCC) framework comprising one cloud server, multiple mobile edge servers, and multiple terminals. While executing sensing tasks, the user terminals can optionally offload sensing data to either MEC server or cloud servers. To minimize the execution latency, we jointly optimize the transmit beamforming matrices and offloading decision variables under the constraint of sensing performance. An alternating optimization algorithm based on multidimensional fractional programming is proposed to tackle the non-convex problem. Simulation results demonstrates the superiority of the proposed mechanism in terms of convergence and task execution latency reduction, compared with the state-of-the-art two-tier ISCC framework.
The field of edge computing has witnessed remarkable growth owing to the increasing demand for real-time processing of data in applications. However, challenges persist due to limitations in performance and power consumption. To overcome these challenges, heterogeneous architectures have emerged that combine host processors with specialized accelerators tailored to specific applications, leading to improved performance and reduced power consumption. However, most of the existing platforms lack the necessary configurability and extendability options for integrating custom accelerators. To overcome these limitations, we introduce in this paper the eXtendible Heterogeneous Energy-Efficient Platform (X-HEEP). X-HEEP is an open-source platform designed to natively support the integration of ultra-low-power edge accelerators. It provides customization options to match specific application requirements by exploring various core types, bus topologies, addressing modes, memory sizes, and peripherals. Moreover, the platform prioritizes energy efficiency by implementing low-power strategies, such as clock-gating and power-gating. We demonstrate the real-world applicability of X-HEEP by providing an integration example tailored for healthcare applications that includes a coarse-grained reconfigurable array (CGRA) and in-memory computing (IMC) accelerators. The resulting design, called HEEPocrates, has been implemented both in field programmable gate array (FPGA) on the Xilinx Zynq-7020 chip and in silicon with TSMC 65nm low-power CMOS technology. We run a set of healthcare applications and measure their energy consumption to demonstrate the alignment of our chip with other state-of-the-art microcontrollers commonly adopted in this domain. Moreover, we present the energy benefits of 4.9x and 4.8x gained by exploiting the integrated CGRA and IMC accelerators compared to running on the host CPU.
Motor imagery classification based on electroencephalography (EEG) signals is one of the most important brain-computer interface applications, although it needs further improvement. Several methods have attempted to obtain useful information from EEG signals by using recent deep learning techniques such as transformers. To improve the classification accuracy, this study proposes a novel EEG-based motor imagery classification method with three key features: generation of a topological map represented as a two-dimensional image from EEG signals with coordinate transformation based on t-SNE, use of the InternImage to extract spatial features, and use of spatiotemporal pooling inspired by PoolFormer to exploit spatiotemporal information concealed in a sequence of EEG images. Experimental results using the PhysioNet EEG Motor Movement/Imagery dataset showed that the proposed method achieved the best classification accuracy of 88.57%, 80.65%, and 70.17% on two-, three-, and four-class motor imagery tasks in cross-individual validation.
Quantum density matrix represents all the information of the entire quantum system, and novel models of meaning employing density matrices naturally model linguistic phenomena such as hyponymy and linguistic ambiguity, among others in quantum question answering tasks. Naturally, we argue that applying the quantum density matrix into classical Question Answering (QA) tasks can show more effective performance. Specifically, we (i) design a new mechanism based on Long Short-Term Memory (LSTM) to accommodate the case when the inputs are matrixes; (ii) apply the new mechanism to QA problems with Convolutional Neural Network (CNN) and gain the LSTM-based QA model with the quantum density matrix. Experiments of our new model on TREC-QA and WIKI-QA data sets show encouraging results. Similarly, we argue that the quantum density matrix can also enhance the image feature information and the relationship between the features for the classical image classification. Thus, we (i) combine density matrices and CNN to design a new mechanism; (ii) apply the new mechanism to some representative classical image classification tasks. A series of experiments show that the application of quantum density matrix in image classification has the generalization and high efficiency on different datasets. The application of quantum density matrix both in classical question answering tasks and classical image classification tasks show more effective performance.
Virtual reality (VR) is a promising data engine for autonomous driving (AD). However, data fidelity in this paradigm is often degraded by VR inconsistency, for which the existing VR approaches become ineffective, as they ignore the inter-dependency between low-level VR synchronizer designs (i.e., data collector) and high-level VR synthesizer designs (i.e., data processor). This paper presents a seamless virtual reality SVR platform for AD, which mitigates such inconsistency, enabling VR agents to interact with each other in a shared symbiotic world. The crux to SVR is an integrated synchronizer and synthesizer IS2 design, which consists of a drift-aware lidar-inertial synchronizer for VR colocation and a motion-aware deep visual synthesis network for augmented reality image generation. We implement SVR on car-like robots in two sandbox platforms, achieving a cm-level VR colocalization accuracy and 3.2% VR image deviation, thereby avoiding missed collisions or model clippings. Experiments show that the proposed SVR reduces the intervention times, missed turns, and failure rates compared to other benchmarks. The SVR-trained neural network can handle unseen situations in real-world environments, by leveraging its knowledge learnt from the VR space.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.