亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider risk-averse learning in repeated unknown games where the goal of the agents is to minimize their individual risk of incurring significantly high cost. Specifically, the agents use the conditional value at risk (CVaR) as a risk measure and rely on bandit feedback in the form of the cost values of the selected actions at every episode to estimate their CVaR values and update their actions. A major challenge in using bandit feedback to estimate CVaR is that the agents can only access their own cost values, which, however, depend on the actions of all agents. To address this challenge, we propose a new risk-averse learning algorithm with momentum that utilizes the full historical information on the cost values. We show that this algorithm achieves sub-linear regret and matches the best known algorithms in the literature. We provide numerical experiments for a Cournot game that show that our method outperforms existing methods.

相關內容

We present Theseus, an efficient application-agnostic open source library for differentiable nonlinear least squares (DNLS) optimization built on PyTorch, providing a common framework for end-to-end structured learning in robotics and vision. Existing DNLS implementations are application specific and do not always incorporate many ingredients important for efficiency. Theseus is application-agnostic, as we illustrate with several example applications that are built using the same underlying differentiable components, such as second-order optimizers, standard costs functions, and Lie groups. For efficiency, Theseus incorporates support for sparse solvers, automatic vectorization, batching, GPU acceleration, and gradient computation with implicit differentiation and direct loss minimization. We do extensive performance evaluation in a set of applications, demonstrating significant efficiency gains and better scalability when these features are incorporated. Project page: //sites.google.com/view/theseus-ai

The automatic synthesis of a policy through reinforcement learning (RL) from a given set of formal requirements depends on the construction of a reward signal and consists of the iterative application of many policy-improvement steps. The synthesis algorithm has to balance target, safety, and comfort requirements in a single objective and to guarantee that the policy improvement does not increase the number of safety-requirements violations, especially for safety-critical applications. In this work, we present a solution to the synthesis problem by solving its two main challenges: reward-shaping from a set of formal requirements and safe policy update. For the former, we propose an automatic reward-shaping procedure, defining a scalar reward signal compliant with the task specification. For the latter, we introduce an algorithm ensuring that the policy is improved in a safe fashion with high-confidence guarantees. We also discuss the adoption of a model-based RL algorithm to efficiently use the collected data and train a model-free agent on the predicted trajectories, where the safety violation does not have the same impact as in the real world. Finally, we demonstrate in standard control benchmarks that the resulting learning procedure is effective and robust even under heavy perturbations of the hyperparameters.

In this paper, we show that the adaptive projected subgradient method (APSM) is bounded perturbation resilient. To illustrate a potential application of this result, we propose a set-theoretic framework for MIMO detection, and we devise algorithms based on a superiorized APSM. Various low-complexity MIMO detection algorithms achieve excellent performance on i.i.d. Gaussian channels, but they typically incur high performance loss if realistic channel models (e.g., correlated channels) are considered. Compared to existing low-complexity iterative detectors such as individually optimal large-MIMO approximate message passing (IO-LAMA), the proposed algorithms can achieve considerably lower symbol error ratios over correlated channels. At the same time, the proposed methods do not require matrix inverses, and their complexity is similar to IO-LAMA.

Model-based and learning-based methods are two major types of methodologies to model car following behaviors. Model-based methods describe the car-following behaviors with explicit mathematical equations, while learning-based methods focus on getting a mapping between inputs and outputs. Both types of methods have advantages and weaknesses. Meanwhile, most car-following models are generative and only consider the inputs of the speed, position, and acceleration of the last time step. To address these issues, this study proposes a novel framework called IDM-Follower that can generate a sequence of following vehicle trajectory by a recurrent autoencoder informed by a physical car-following model, the Intelligent Driving Model (IDM).We implement a novel structure with two independent encoders and a self-attention decoder that could sequentially predict the following trajectories. A loss function considering the discrepancies between predictions and labeled data integrated with discrepancies from model-based predictions is implemented to update the neural network parameters. Numerical experiments with multiple settings on simulation and NGSIM datasets show that the IDM-Follower can improve the prediction performance compared to the model-based or learning-based methods alone. Analysis on different noise levels also shows good robustness of the model.

We tackle the problem of novel class discovery, detection, and localization (NCDL). In this setting, we assume a source dataset with labels for objects of commonly observed classes. Instances of other classes need to be discovered, classified, and localized automatically based on visual similarity, without human supervision. To this end, we propose a two-stage object detection network Region-based NCDL (RNCDL), that uses a region proposal network to localize object candidates and is trained to classify each candidate, either as one of the known classes, seen in the source dataset, or one of the extended set of novel classes, with a long-tail distribution constraint on the class assignments, reflecting the natural frequency of classes in the real world. By training our detection network with this objective in an end-to-end manner, it learns to classify all region proposals for a large variety of classes, including those that are not part of the labeled object class vocabulary. Our experiments conducted using COCO and LVIS datasets reveal that our method is significantly more effective compared to multi-stage pipelines that rely on traditional clustering algorithms or use pre-extracted crops. Furthermore, we demonstrate the generality of our approach by applying our method to a large-scale Visual Genome dataset, where our network successfully learns to detect various semantic classes without explicit supervision.

In reinforcement learning from human feedback, it is common to optimize against a reward model trained to predict human preferences. Because the reward model is an imperfect proxy, optimizing its value too much can hinder ground truth performance, in accordance with Goodhart's law. This effect has been frequently observed, but not carefully measured due to the expense of collecting human preference data. In this work, we use a synthetic setup in which a fixed "gold-standard" reward model plays the role of humans, providing labels used to train a proxy reward model. We study how the gold reward model score changes as we optimize against the proxy reward model using either reinforcement learning or best-of-$n$ sampling. We find that this relationship follows a different functional form depending on the method of optimization, and that in both cases its coefficients scale smoothly with the number of reward model parameters. We also study the effect on this relationship of the size of the reward model dataset, the number of reward model and policy parameters, and the coefficient of the KL penalty added to the reward in the reinforcement learning setup. We explore the implications of these empirical results for theoretical considerations in AI alignment.

Though learning has become a core component of modern information processing, there is now ample evidence that it can lead to biased, unsafe, and prejudiced systems. The need to impose requirements on learning is therefore paramount, especially as it reaches critical applications in social, industrial, and medical domains. However, the non-convexity of most modern statistical problems is only exacerbated by the introduction of constraints. Whereas good unconstrained solutions can often be learned using empirical risk minimization, even obtaining a model that satisfies statistical constraints can be challenging. All the more so, a good one. In this paper, we overcome this issue by learning in the empirical dual domain, where constrained statistical learning problems become unconstrained and deterministic. We analyze the generalization properties of this approach by bounding the empirical duality gap -- i.e., the difference between our approximate, tractable solution and the solution of the original (non-convex) statistical problem -- and provide a practical constrained learning algorithm. These results establish a constrained counterpart to classical learning theory, enabling the explicit use of constraints in learning. We illustrate this theory and algorithm in rate-constrained learning applications arising in fairness and adversarial robustness.

Outlier detection (OD) literature exhibits numerous algorithms as it applies to diverse domains. However, given a new detection task, it is unclear how to choose an algorithm to use, nor how to set its hyperparameter(s) (HPs) in unsupervised settings. HP tuning is an ever-growing problem with the arrival of many new detectors based on deep learning, which usually come with a long list of HPs. Surprisingly, the issue of model selection in the outlier mining literature has been "the elephant in the room"; a significant factor in unlocking the utmost potential of deep methods, yet little said or done to systematically tackle the issue. In the first part of this paper, we conduct the first large-scale analysis on the HP sensitivity of deep OD methods, and through more than 35,000 trained models, quantitatively demonstrate that model selection is inevitable. Next, we design a HP-robust and scalable deep hyper-ensemble model called ROBOD that assembles models with varying HP configurations, bypassing the choice paralysis. Importantly, we introduce novel strategies to speed up ensemble training, such as parameter sharing, batch/simultaneous training, and data subsampling, that allow us to train fewer models with fewer parameters. Extensive experiments on both image and tabular datasets show that ROBOD achieves and retains robust, state-of-the-art detection performance as compared to its modern counterparts, while taking only $2$-$10$\% of the time by the naive hyper-ensemble with independent training.

Online convex optimization (OCO) is a widely used framework in online learning. In each round, the learner chooses a decision in some convex set and an adversary chooses a convex loss function, and then the learner suffers the loss associated with their chosen decision. However, in many of the motivating applications the loss of the learner depends not only on the current decision but on the entire history of decisions until that point. The OCO framework and existing generalizations thereof fail to capture this. In this work we introduce a generalization of the OCO framework, ``Online Convex Optimization with Unbounded Memory'', that captures long-term dependence on past decisions. We introduce the notion of $p$-effective memory capacity, $H_p$, that quantifies the maximum influence of past decisions on current losses. We prove a $O(\sqrt{H_1 T})$ policy regret bound and a stronger $O(\sqrt{H_p T})$ policy regret bound under mild additional assumptions. These bounds are optimal in terms of their dependence on the time horizon $T$. We show the broad applicability of our framework by using it to derive regret bounds, and to simplify existing regret bound derivations, for a variety of online learning problems including an online variant of performative prediction and online linear control.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

北京阿比特科技有限公司