亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Object locating in virtual reality (VR) has been widely used in many VR applications, such as virtual assembly, virtual repair, virtual remote coaching. However, when there are a large number of objects in the virtual environment(VE), the user cannot locate the target object efficiently and comfortably. In this paper, we propose a label guidance based object locating method for locating the target object efficiently in VR. Firstly, we introduce the label guidance based object locating pipeline to improve the efficiency of the object locating. It arranges the labels of all objects on the same screen, lets the user select the target labels first, and then uses the flying labels to guide the user to the target object. Then we summarize five principles for constructing the label layout for object locating and propose a two-level hierarchical sorted and orientated label layout based on the five principles for the user to select the candidate labels efficiently and comfortably. After that, we propose the view and gaze based label guidance method for guiding the user to locate the target object based on the selected candidate labels.It generates specific flying trajectories for candidate labels, updates the flying speed of candidate labels, keeps valid candidate labels , and removes the invalid candidate labels in real time during object locating with the guidance of the candidate labels. Compared with the traditional method, the user study results show that our method significantly improves efficiency and reduces task load for object locating.

相關內容

3D-aware GANs offer new capabilities for creative content editing, such as view synthesis, while preserving the editing capability of their 2D counterparts. Using GAN inversion, these methods can reconstruct an image or a video by optimizing/predicting a latent code and achieve semantic editing by manipulating the latent code. However, a model pre-trained on a face dataset (e.g., FFHQ) often has difficulty handling faces with out-of-distribution (OOD) objects, (e.g., heavy make-up or occlusions). We address this issue by explicitly modeling OOD objects in face videos. Our core idea is to represent the face in a video using two neural radiance fields, one for in-distribution and the other for out-of-distribution data, and compose them together for reconstruction. Such explicit decomposition alleviates the inherent trade-off between reconstruction fidelity and editability. We evaluate our method's reconstruction accuracy and editability on challenging real videos and showcase favorable results against other baselines.

With the advance of language models, privacy protection is receiving more attention. Training data extraction is therefore of great importance, as it can serve as a potential tool to assess privacy leakage. However, due to the difficulty of this task, most of the existing methods are proof-of-concept and still not effective enough. In this paper, we investigate and benchmark tricks for improving training data extraction using a publicly available dataset. Because most existing extraction methods use a pipeline of generating-then-ranking, i.e., generating text candidates as potential training data and then ranking them based on specific criteria, our research focuses on the tricks for both text generation (e.g., sampling strategy) and text ranking (e.g., token-level criteria). The experimental results show that several previously overlooked tricks can be crucial to the success of training data extraction. Based on the GPT-Neo 1.3B evaluation results, our proposed tricks outperform the baseline by a large margin in most cases, providing a much stronger baseline for future research.

There is a strong demand for virtual reality (VR) to bring quality healthcare to underserved populations. This paper addresses this need with the design and prototype of SURVIVRS: Surround Video-Based Virtual Reality for Surgery Guidance. SURVIVRS allows a remote specialist to guide a local surgery team through a virtual reality (VR) telepresence interface. SURVIVRS is motivated by a need for medical expertise in remote and hard-to-reach areas, such as low-to-middle-income countries (LMICs). The remote surgeon interface allows the live observation of a procedure and combines 3D user interface annotation and communication tools on streams of the surgical site and the patient vitals monitor. SURVIVRS also supports debriefing and educational experiences by offering the ability for users to watch recorded surgeries from the point of view of the remote expert. The main contributions of this work are: the feasibility demonstration of the SURVIVRS system through a rigorous 3D user interface design process; the implementation of a prototype application that realizes the proposed design; and a usability evaluation of SURVIVRS showing that the tool was highly favored by users from the general population. The paper discusses the next steps in this line of research aimed at more equitable and diverse access to healthcare.

Vector quantized diffusion (VQ-Diffusion) is a powerful generative model for text-to-image synthesis, but sometimes can still generate low-quality samples or weakly correlated images with text input. We find these issues are mainly due to the flawed sampling strategy. In this paper, we propose two important techniques to further improve the sample quality of VQ-Diffusion. 1) We explore classifier-free guidance sampling for discrete denoising diffusion model and propose a more general and effective implementation of classifier-free guidance. 2) We present a high-quality inference strategy to alleviate the joint distribution issue in VQ-Diffusion. Finally, we conduct experiments on various datasets to validate their effectiveness and show that the improved VQ-Diffusion suppresses the vanilla version by large margins. We achieve an 8.44 FID score on MSCOCO, surpassing VQ-Diffusion by 5.42 FID score. When trained on ImageNet, we dramatically improve the FID score from 11.89 to 4.83, demonstrating the superiority of our proposed techniques.

Virtual reality (VR) is known to cause a "time compression" effect, where the time spent in VR feels to pass faster than the effective elapsed time. Our goal with this research is to investigate if the physical realism of a VR experience reduces the time compression effect on a gas monitoring training task that requires precise time estimation. We used physical props and passive haptics in a VR task with high physical realism and compared it to an equivalent standard VR task with only virtual objects. We also used an identical real-world task as a baseline time estimation task. Each scenario includes the user picking up a device, opening a door, navigating a corridor with obstacles, performing five short time estimations, and estimating the total time from task start to end. Contrary to previous work, there was a consistent time dilation effect in all conditions, including the real world. However, no significant effects were found comparing the estimated differences between the high and low physical realism conditions. We discuss implications of the results and limitations of the study and propose future work that may better address this important question for virtual reality training.

Open vocabulary models (e.g. CLIP) have shown strong performance on zero-shot classification through their ability generate embeddings for each class based on their (natural language) names. Prior work has focused on improving the accuracy of these models through prompt engineering or by incorporating a small amount of labeled downstream data (via finetuning). However, there has been little focus on improving the richness of the class names themselves, which can pose issues when class labels are coarsely-defined and uninformative. We propose Classification with Hierarchical Label Sets (or CHiLS), an alternative strategy for zero-shot classification specifically designed for datasets with implicit semantic hierarchies. CHiLS proceeds in three steps: (i) for each class, produce a set of subclasses, using either existing label hierarchies or by querying GPT-3; (ii) perform the standard zero-shot CLIP procedure as though these subclasses were the labels of interest; (iii) map the predicted subclass back to its parent to produce the final prediction. Across numerous datasets with underlying hierarchical structure, CHiLS leads to improved accuracy in situations both with and without ground-truth hierarchical information. CHiLS is simple to implement within existing CLIP pipelines and requires no additional training cost. Code is available at: //github.com/acmi-lab/CHILS.

Selecting a suitable training dataset is crucial for both general-domain (e.g., GPT-3) and domain-specific (e.g., Codex) language models (LMs). We formalize this data selection problem as selecting a subset of a large raw unlabeled dataset to match a desired target distribution, given some unlabeled target samples. Due to the large scale and dimensionality of the raw text data, existing methods use simple heuristics to select data that are similar to a high-quality reference corpus (e.g., Wikipedia), or leverage experts to manually curate data. Instead, we extend the classic importance resampling approach used in low-dimensions for LM data selection. Crucially, we work in a reduced feature space to make importance weight estimation tractable over the space of text. To determine an appropriate feature space, we first show that KL reduction, a data metric that measures the proximity between selected data and the target in a feature space, has high correlation with average accuracy on 8 downstream tasks (r=0.89) when computed with simple n-gram features. From this observation, we present Data Selection with Importance Resampling (DSIR), an efficient and scalable algorithm that estimates importance weights in a reduced feature space (e.g., n-gram features in our instantiation) and selects data with importance resampling according to these weights. When training general-domain models (target is Wikipedia + books), DSIR improves over random selection and heuristic filtering baselines by 2--2.5% on the GLUE benchmark. When performing continued pretraining towards a specific domain, DSIR performs comparably to expert curated data across 8 target distributions.

Language generation models have been an increasingly powerful enabler for many applications. Many such models offer free or affordable API access, which makes them potentially vulnerable to model extraction attacks through distillation. To protect intellectual property (IP) and ensure fair use of these models, various techniques such as lexical watermarking and synonym replacement have been proposed. However, these methods can be nullified by obvious countermeasures such as "synonym randomization". To address this issue, we propose GINSEW, a novel method to protect text generation models from being stolen through distillation. The key idea of our method is to inject secret signals into the probability vector of the decoding steps for each target token. We can then detect the secret message by probing a suspect model to tell if it is distilled from the protected one. Experimental results show that GINSEW can effectively identify instances of IP infringement with minimal impact on the generation quality of protected APIs. Our method demonstrates an absolute improvement of 19 to 29 points on mean average precision (mAP) in detecting suspects compared to previous methods against watermark removal attacks.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

北京阿比特科技有限公司