Policy gradient methods are widely used in reinforcement learning. Yet, the nonconvexity of policy optimization imposes significant challenges in understanding the global convergence of policy gradient methods. For a class of finite-horizon Markov Decision Processes (MDPs) with general state and action spaces, we develop a framework that provides a set of easily verifiable assumptions to ensure the Kurdyka-Lojasiewicz (KL) condition of the policy optimization. Leveraging the KL condition, policy gradient methods converge to the globally optimal policy with a non-asymptomatic rate despite nonconvexity. Our results find applications in various control and operations models, including entropy-regularized tabular MDPs, Linear Quadratic Regulator (LQR) problems, stochastic inventory models, and stochastic cash balance problems, for which we show an $\epsilon$-optimal policy can be obtained using a sample size in $\tilde{\mathcal{O}}(\epsilon^{-1})$ and polynomial in terms of the planning horizon by stochastic policy gradient methods. Our result establishes the first sample complexity for multi-period inventory systems with Markov-modulated demands and stochastic cash balance problems in the literature.
All machine learning algorithms use a loss, cost, utility or reward function to encode the learning objective and oversee the learning process. This function that supervises learning is a frequently unrecognized hyperparameter that determines how incorrect outputs are penalized and can be tuned to improve performance. This paper shows that training speed and final accuracy of neural networks can significantly depend on the loss function used to train neural networks. In particular derivative values can be significantly different with different loss functions leading to significantly different performance after gradient descent based Backpropagation (BP) training. This paper explores the effect on performance of using new loss functions that are also convex but penalize errors differently compared to the popular Cross-entropy loss. Two new classification loss functions that significantly improve performance on a wide variety of benchmark tasks are proposed. A new loss function call smooth absolute error that outperforms the Squared error, Huber and Log-Cosh losses on datasets with significantly many outliers is proposed. This smooth absolute error loss function is infinitely differentiable and more closely approximates the absolute error loss compared to the Huber and Log-Cosh losses used for robust regression.
Deep learning techniques have achieved superior performance in computer-aided medical image analysis, yet they are still vulnerable to imperceptible adversarial attacks, resulting in potential misdiagnosis in clinical practice. Oppositely, recent years have also witnessed remarkable progress in defense against these tailored adversarial examples in deep medical diagnosis systems. In this exposition, we present a comprehensive survey on recent advances in adversarial attacks and defenses for medical image analysis with a systematic taxonomy in terms of the application scenario. We also provide a unified framework for different types of adversarial attack and defense methods in the context of medical image analysis. For a fair comparison, we establish a new benchmark for adversarially robust medical diagnosis models obtained by adversarial training under various scenarios. To the best of our knowledge, this is the first survey paper that provides a thorough evaluation of adversarially robust medical diagnosis models. By analyzing qualitative and quantitative results, we conclude this survey with a detailed discussion of current challenges for adversarial attack and defense in medical image analysis systems to shed light on future research directions. Code is available on \href{//github.com/tomvii/Adv_MIA}{\color{red}{GitHub}}.
We present InstantGeoAvatar, a method for efficient and effective learning from monocular video of detailed 3D geometry and appearance of animatable implicit human avatars. Our key observation is that the optimization of a hash grid encoding to represent a signed distance function (SDF) of the human subject is fraught with instabilities and bad local minima. We thus propose a principled geometry-aware SDF regularization scheme that seamlessly fits into the volume rendering pipeline and adds negligible computational overhead. Our regularization scheme significantly outperforms previous approaches for training SDFs on hash grids. We obtain competitive results in geometry reconstruction and novel view synthesis in as little as five minutes of training time, a significant reduction from the several hours required by previous work. InstantGeoAvatar represents a significant leap forward towards achieving interactive reconstruction of virtual avatars.
Multimodal learning involves integrating information from various modalities to enhance learning and comprehension. We compare three modality fusion strategies in person identification and verification by processing two modalities: voice and face. In this paper, a one-dimensional convolutional neural network is employed for x-vector extraction from voice, while the pre-trained VGGFace2 network and transfer learning are utilized for face modality. In addition, gammatonegram is used as speech representation in engagement with the Darknet19 pre-trained network. The proposed systems are evaluated using the K-fold cross-validation technique on the 118 speakers of the test set of the VoxCeleb2 dataset. The comparative evaluations are done for single-modality and three proposed multimodal strategies in equal situations. Results demonstrate that the feature fusion strategy of gammatonegram and facial features achieves the highest performance, with an accuracy of 98.37% in the person identification task. However, concatenating facial features with the x-vector reaches 0.62% for EER in verification tasks.
Continual learning with deep neural networks presents challenges distinct from both the fixed-dataset and convex continual learning regimes. One such challenge is plasticity loss, wherein a neural network trained in an online fashion displays a degraded ability to fit new tasks. This problem has been extensively studied in both supervised learning and off-policy reinforcement learning (RL), where a number of remedies have been proposed. Still, plasticity loss has received less attention in the on-policy deep RL setting. Here we perform an extensive set of experiments examining plasticity loss and a variety of mitigation methods in on-policy deep RL. We demonstrate that plasticity loss is pervasive under domain shift in this regime, and that a number of methods developed to resolve it in other settings fail, sometimes even performing worse than applying no intervention at all. In contrast, we find that a class of ``regenerative'' methods are able to consistently mitigate plasticity loss in a variety of contexts, including in gridworld tasks and more challenging environments like Montezuma's Revenge and ProcGen.
Machine learning methods have been remarkably successful in material science, providing novel scientific insights, guiding future laboratory experiments, and accelerating materials discovery. Despite the promising performance of these models, understanding the decisions they make is also essential to ensure the scientific value of their outcomes. However, there is a recent and ongoing debate about the diversity of explanations, which potentially leads to scientific inconsistency. This Perspective explores the sources and implications of these diverse explanations in ML applications for physical sciences. Through three case studies in materials science and molecular property prediction, we examine how different models, explanation methods, levels of feature attribution, and stakeholder needs can result in varying interpretations of ML outputs. Our analysis underscores the importance of considering multiple perspectives when interpreting ML models in scientific contexts and highlights the critical need for scientists to maintain control over the interpretation process, balancing data-driven insights with domain expertise to meet specific scientific needs. By fostering a comprehensive understanding of these inconsistencies, we aim to contribute to the responsible integration of eXplainable Artificial Intelligence (XAI) into physical sciences and improve the trustworthiness of ML applications in scientific discovery.
We initiate an investigation into the optimization properties of next-token prediction (NTP), the dominant training paradigm for modern language models. Specifically, we study the structural properties of the solutions selected by gradient-based optimizers among the many possible minimizers of the NTP objective. By framing NTP as cross-entropy minimization across distinct contexts, each tied with a sparse conditional probability distribution across a finite vocabulary of tokens, we introduce "NTP-separability conditions" that enable reaching the data-entropy lower bound. With this setup, and focusing on linear models with fixed context embeddings, we characterize the optimization bias of gradient descent (GD): Within the data subspace defined by the sparsity patterns of distinct contexts, GD selects parameters that equate the logits' differences of in-support tokens to their log-odds. In the orthogonal subspace, the GD parameters diverge in norm and select the direction that maximizes a margin specific to NTP. These findings extend previous research on implicit bias in one-hot classification to the NTP setting, highlighting key differences and prompting further research into the optimization and generalization properties of NTP, irrespective of the specific architecture used to generate the context embeddings.
We present a maximum entropy inverse reinforcement learning (IRL) approach for improving the sample quality of diffusion generative models, especially when the number of generation time steps is small. Similar to how IRL trains a policy based on the reward function learned from expert demonstrations, we train (or fine-tune) a diffusion model using the log probability density estimated from training data. Since we employ an energy-based model (EBM) to represent the log density, our approach boils down to the joint training of a diffusion model and an EBM. Our IRL formulation, named Diffusion by Maximum Entropy IRL (DxMI), is a minimax problem that reaches equilibrium when both models converge to the data distribution. The entropy maximization plays a key role in DxMI, facilitating the exploration of the diffusion model and ensuring the convergence of the EBM. We also propose Diffusion by Dynamic Programming (DxDP), a novel reinforcement learning algorithm for diffusion models, as a subroutine in DxMI. DxDP makes the diffusion model update in DxMI efficient by transforming the original problem into an optimal control formulation where value functions replace back-propagation in time. Our empirical studies show that diffusion models fine-tuned using DxMI can generate high-quality samples in as few as 4 and 10 steps. Additionally, DxMI enables the training of an EBM without MCMC, stabilizing EBM training dynamics and enhancing anomaly detection performance.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.