We study the expressivity of ReLU neural networks in the setting of a binary classification problem from a topological perspective. Recently, empirical studies showed that neural networks operate by changing topology, transforming a topologically complicated data set into a topologically simpler one as it passes through the layers. This topological simplification has been measured by Betti numbers, which are algebraic invariants of a topological space. We use the same measure to establish lower and upper bounds on the topological simplification a ReLU neural network can achieve with a given architecture. We therefore contribute to a better understanding of the expressivity of ReLU neural networks in the context of binary classification problems by shedding light on their ability to capture the underlying topological structure of the data. In particular the results show that deep ReLU neural networks are exponentially more powerful than shallow ones in terms of topological simplification. This provides a mathematically rigorous explanation why deeper networks are better equipped to handle complex and topologically rich datasets.
We assume to be given structural equations over discrete variables inducing a directed acyclic graph, namely, a structural causal model, together with data about its internal nodes. The question we want to answer is how we can compute bounds for partially identifiable counterfactual queries from such an input. We start by giving a map from structural casual models to credal networks. This allows us to compute exact counterfactual bounds via algorithms for credal nets on a subclass of structural causal models. Exact computation is going to be inefficient in general given that, as we show, causal inference is NP-hard even on polytrees. We target then approximate bounds via a causal EM scheme. We evaluate their accuracy by providing credible intervals on the quality of the approximation; we show through a synthetic benchmark that the EM scheme delivers accurate results in a fair number of runs. In the course of the discussion, we also point out what seems to be a neglected limitation to the trending idea that counterfactual bounds can be computed without knowledge of the structural equations. We also present a real case study on palliative care to show how our algorithms can readily be used for practical purposes.
We study arrangements of geodesic arcs on a sphere, where all arcs are internally disjoint and each arc has its endpoints located within the interior of other arcs. We establish fundamental results concerning the minimum number of arcs in such arrangements, depending on local geometric constraints such as "one-sidedness" and "k-orientation". En route to these results, we generalize and settle an open problem from CCCG 2022, proving that any such arrangement has at least two "clockwise swirls" and at least two "counterclockwise swirls".
This research explores the realm of neural image captioning using deep learning models. The study investigates the performance of different neural architecture configurations, focusing on the inject architecture, and proposes a novel quality metric for evaluating caption generation. Through extensive experimentation and analysis, this work sheds light on the challenges and opportunities in image captioning, providing insights into model behavior and overfitting. The results reveal that while the merge models exhibit a larger vocabulary and higher ROUGE scores, the inject architecture generates relevant and concise image captions. The study also highlights the importance of refining training data and optimizing hyperparameters for improved model performance. This research contributes to the growing body of knowledge in neural image captioning and encourages further exploration in the field, emphasizing the democratization of artificial intelligence.
We study the scheduling problem in a status update system composed of an arbitrary number of information sources with different service time distributions and weights for the purpose of minimizing the weighted sum age of information (AoI). In particular, we study open-loop schedulers which rely only on the statistics (specifically, only on the first two moments) of the source service times, in contrast to closed-loop schedulers that also make use of the actual realizations of the service times and the AoI processes in making scheduling decisions. Open-loop scheduling policies can be constructed off-line and are simpler to implement compared to their closed-loop counterparts. We consider the generate-at-will (GAW) model, and develop an analytical method to calculate the exact AoI for the probabilistic and cyclic open-loop schedulers. In both cases, the server initiates the sampling of a source and the ensuing transmission of the update packet from the source to the server in an open-loop manner; either based on a certain probability (probabilistic scheme) or according to a deterministic cyclic pattern (cyclic scheme). We derive the optimum open-loop cyclic scheduling policy in closed form for the specific case of N=2 sources and propose well-performing heuristic cyclic schedulers for general number of sources, i.e., N>2. We study the proposed cyclic schedulers against probabilistic schedulers and several existing methods in the literature to validate their effectiveness.
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review salient neural architectures in which attention has been incorporated, and discuss applications in which modeling attention has shown a significant impact. Finally, we also describe how attention has been used to improve the interpretability of neural networks. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.