亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the classical supervised learning settings, classifiers are fit with the assumption of balanced label distributions and produce remarkable results on the same. In the real world, however, these assumptions often bend and in turn adversely impact model performance. Identifying bad learners in skewed target distributions is even more challenging. Thus achieving model robustness under these "label shift" settings is an important task in autonomous perception. In this paper, we analyze the impact of label shift on the task of multi-weather classification for autonomous vehicles. We use this information as a prior to better assess pedestrian detection in adverse weather. We model the classification performance as an indicator of robustness under 4 label shift scenarios and study the behavior of multiple classes of models. We propose t-RAIN a similarity mapping technique for synthetic data augmentation using large scale generative models and evaluate the performance on DAWN dataset. This mapping boosts model test accuracy by 2.1, 4.4, 1.9, 2.7 % in no-shift, fog, snow, dust shifts respectively. We present state-of-the-art pedestrian detection results on real and synthetic weather domains with best performing 82.69 AP (snow) and 62.31 AP (fog) respectively.

相關內容

Deep image classification models trained on vast amounts of web-scraped data are susceptible to data poisoning - a mechanism for backdooring models. A small number of poisoned samples seen during training can severely undermine a model's integrity during inference. Existing work considers an effective defense as one that either (i) restores a model's integrity through repair or (ii) detects an attack. We argue that this approach overlooks a crucial trade-off: Attackers can increase robustness at the expense of detectability (over-poisoning) or decrease detectability at the cost of robustness (under-poisoning). In practice, attacks should remain both undetectable and robust. Detectable but robust attacks draw human attention and rigorous model evaluation or cause the model to be re-trained or discarded. In contrast, attacks that are undetectable but lack robustness can be repaired with minimal impact on model accuracy. Our research points to intrinsic flaws in current attack evaluation methods and raises the bar for all data poisoning attackers who must delicately balance this trade-off to remain robust and undetectable. To demonstrate the existence of more potent defenders, we propose defenses designed to (i) detect or (ii) repair poisoned models using a limited amount of trusted image-label pairs. Our results show that an attacker who needs to be robust and undetectable is substantially less threatening. Our defenses mitigate all tested attacks with a maximum accuracy decline of 2% using only 1% of clean data on CIFAR-10 and 2.5% on ImageNet. We demonstrate the scalability of our defenses by evaluating large vision-language models, such as CLIP. Attackers who can manipulate the model's parameters pose an elevated risk as they can achieve higher robustness at low detectability compared to data poisoning attackers.

Classifiers based on deep neural networks have been recently challenged by Adversarial Attack, where the widely existing vulnerability has invoked the research in defending them from potential threats. Given a vulnerable classifier, existing defense methods are mostly white-box and often require re-training the victim under modified loss functions/training regimes. While the model/data/training specifics of the victim are usually unavailable to the user, re-training is unappealing, if not impossible for reasons such as limited computational resources. To this end, we propose a new black-box defense framework. It can turn any pre-trained classifier into a resilient one with little knowledge of the model specifics. This is achieved by new joint Bayesian treatments on the clean data, the adversarial examples and the classifier, for maximizing their joint probability. It is further equipped with a new post-train strategy which keeps the victim intact. We name our framework Bayesian Boundary Correction (BBC). BBC is a general and flexible framework that can easily adapt to different data types. We instantiate BBC for image classification and skeleton-based human activity recognition, for both static and dynamic data. Exhaustive evaluation shows that BBC has superior robustness and can enhance robustness without severely hurting the clean accuracy, compared with existing defense methods.

Autonomous vehicles rely on LiDAR sensors to perceive the environment. Adverse weather conditions like rain, snow, and fog negatively affect these sensors, reducing their reliability by introducing unwanted noise in the measurements. In this work, we tackle this problem by proposing a novel approach for detecting adverse weather effects in LiDAR data. We reformulate this problem as an outlier detection task and use an energy-based framework to detect outliers in point clouds. More specifically, our method learns to associate low energy scores with inlier points and high energy scores with outliers allowing for robust detection of adverse weather effects. In extensive experiments, we show that our method performs better in adverse weather detection and has higher robustness to unseen weather effects than previous state-of-the-art methods. Furthermore, we show how our method can be used to perform simultaneous outlier detection and semantic segmentation. Finally, to help expand the research field of LiDAR perception in adverse weather, we release the SemanticSpray dataset, which contains labeled vehicle spray data in highway-like scenarios. The dataset is available at //semantic-spray-dataset.github.io .

Efficient and accurate segmentation of unseen objects is crucial for robotic manipulation. However, it remains challenging due to over- or under-segmentation. Although existing refinement methods can enhance the segmentation quality, they fix only minor boundary errors or are not sufficiently fast. In this work, we propose INSTAnce Boundary Explicit Error Estimation and Refinement (INSTA-BEEER), a novel refinement model that allows for adding and deleting instances and sharpening boundaries. Leveraging an error-estimation-then-refinement scheme, the model first estimates the pixel-wise boundary explicit errors: true positive, true negative, false positive, and false negative pixels of the instance boundary in the initial segmentation. It then refines the initial segmentation using these error estimates as guidance. Experiments show that the proposed model significantly enhances segmentation, achieving state-of-the-art performance. Furthermore, with a fast runtime (less than 0.1 s), the model consistently improves performance across various initial segmentation methods, making it highly suitable for practical robotic applications.

Transfer learning aims to make the most of existing pre-trained models to achieve better performance on a new task in limited data scenarios. However, it is unclear which models will perform best on which task, and it is prohibitively expensive to try all possible combinations. If transferability estimation offers a computation-efficient approach to evaluate the generalisation ability of models, prior works focused exclusively on classification settings. To overcome this limitation, we extend transferability metrics to object detection. We design a simple method to extract local features corresponding to each object within an image using ROI-Align. We also introduce TLogME, a transferability metric taking into account the coordinates regression task. In our experiments, we compare TLogME to state-of-the-art metrics in the estimation of transfer performance of the Faster-RCNN object detector. We evaluate all metrics on source and target selection tasks, for real and synthetic datasets, and with different backbone architectures. We show that, over different tasks, TLogME using the local extraction method provides a robust correlation with transfer performance and outperforms other transferability metrics on local and global level features.

For the task of semantic segmentation (SS) under domain shift, active learning (AL) acquisition strategies based on image regions and pseudo labels are state-of-the-art (SoA). The presence of diverse pseudo-labels within a region identifies pixels between different classes, which is a labeling efficient active learning data acquisition strategy. However, by design, pseudo-label variations are limited to only select the contours of classes, limiting the final AL performance. We approach AL for SS in the Poincar\'e hyperbolic ball model for the first time and leverage the variations of the radii of pixel embeddings within regions as a novel data acquisition strategy. This stems from a novel geometric property of a hyperbolic space trained without enforced hierarchies, which we experimentally prove. Namely, classes are mapped into compact hyperbolic areas with a comparable intra-class radii variance, as the model places classes of increasing explainable difficulty at denser hyperbolic areas, i.e. closer to the Poincar\'e ball edge. The variation of pixel embedding radii identifies well the class contours, but they also select a few intra-class peculiar details, which boosts the final performance. Our proposed HALO (Hyperbolic Active Learning Optimization) surpasses the supervised learning performance for the first time in AL for SS under domain shift, by only using a small portion of labels (i.e., 1%). The extensive experimental analysis is based on two established benchmarks, i.e. GTAV $\rightarrow$ Cityscapes and SYNTHIA $\rightarrow$ Cityscapes, where we set a new SoA. The code will be released.

With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24704 high-quality traffic images and 277596 instances of 9 categories. For SODA-A, we harvest 2510 high-resolution aerial images and annotate 800203 instances over 9 classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes will be available soon at: \url{//shaunyuan22.github.io/SODA}.

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司