亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a new regression framework designed to deal with large-scale, complex data that lies around a low-dimensional manifold. Our approach first constructs a graph representation, referred to as the skeleton, to capture the underlying geometric structure. We then define metrics on the skeleton graph and apply nonparametric regression techniques, along with feature transformations based on the graph, to estimate the regression function. In addition to the included nonparametric methods, we also discuss the limitations of some nonparametric regressors with respect to the general metric space such as the skeleton graph. The proposed regression framework allows us to bypass the curse of dimensionality and provides additional advantages that it can handle the union of multiple manifolds and is robust to additive noise and noisy observations. We provide statistical guarantees for the proposed method and demonstrate its effectiveness through simulations and real data examples.

相關內容

Network flow problems, which involve distributing traffic over a network such that the underlying infrastructure is used effectively, are ubiquitous in transportation and logistics. Among them, the Multi-Commodity Network Flow (MCNF) problem is of general interest, as it concerns the distribution of multiple flows of different sizes between several sources and sinks, while achieving effective utilization of the links. Due to the appeal of data-driven optimization, these problems have increasingly been approached using graph learning methods. In this paper, we propose a novel graph learning architecture for network flow problems called Per-Edge Weights (PEW). This method builds on a Graph Attention Network and uses distinctly parametrized message functions along each link. We extensively evaluate the proposed solution through an Internet flow routing case study using $17$ Service Provider topologies and $2$ routing schemes. We show that PEW yields substantial gains over architectures whose global message function constrains the routing unnecessarily. We also find that an MLP is competitive with other standard architectures. Furthermore, we shed some light on the relationship between graph structure and predictive performance for data-driven routing of flows, an aspect that has not been considered by existing work in the area.

We present a novel deep learning-based framework: Embedded Feature Similarity Optimization with Specific Parameter Initialization (SOPI) for 2D/3D registration which is a most challenging problem due to the difficulty such as dimensional mismatch, heavy computation load and lack of golden evaluating standard. The framework we designed includes a parameter specification module to efficiently choose initialization pose parameter and a fine-registration network to align images. The proposed framework takes extracting multi-scale features into consideration using a novel composite connection encoder with special training techniques. The method is compared with both learning-based methods and optimization-based methods to further evaluate the performance. Our experiments demonstrate that the method in this paper has improved the registration performance, and thereby outperforms the existing methods in terms of accuracy and running time. We also show the potential of the proposed method as an initial pose estimator.

The deep generative model yields an implicit estimator for the unknown distribution or density function of the observation. This paper investigates some statistical properties of the implicit density estimator pursued by VAE-type methods from a nonparametric density estimation framework. More specifically, we obtain convergence rates of the VAE-type density estimator under the assumption that the underlying true density function belongs to a locally H\"{o}lder class. Remarkably, a near minimax optimal rate with respect to the Hellinger metric can be achieved by the simplest network architecture, a shallow generative model with a one-dimensional latent variable. The proof of the main theorem relies on the well-known result from the nonparametric Bayesian literature that a smooth density with a suitably decaying tail can efficiently be approximated by a finite mixture of normal distributions. We also discuss an alternative proof, which offers important insights and suggests a potential extension to structured density estimation.

We investigate the approximation of high-dimensional target measures as low-dimensional updates of a dominating reference measure. This approximation class replaces the associated density with the composition of: (i) a feature map that identifies the leading principal components or features of the target measure, relative to the reference, and (ii) a low-dimensional profile function. When the reference measure satisfies a subspace $\phi$-Sobolev inequality, we construct a computationally tractable approximation that yields certifiable error guarantees with respect to the Amari $\alpha$-divergences. Our construction proceeds in two stages. First, for any feature map and any $\alpha$-divergence, we obtain an analytical expression for the optimal profile function. Second, for linear feature maps, the principal features are obtained from eigenvectors of a matrix involving gradients of the log-density. Neither step requires explicit access to normalizing constants. Notably, by leveraging the $\phi$-Sobolev inequalities, we demonstrate that these features universally certify approximation errors across the range of $\alpha$-divergences $\alpha \in (0,1]$. We then propose an application to Bayesian inverse problems and provide an analogous construction with approximation guarantees that hold in expectation over the data. We conclude with an extension of the proposed dimension reduction strategy to nonlinear feature maps.

This paper is concerned with the estimation of the partial derivatives of a probability density function of directional data on the $d$-dimensional torus within the local thresholding framework. The estimators here introduced are built by means of the toroidal needlets, a class of wavelets characterized by excellent concentration properties in both the real and the harmonic domains. In particular, we discuss the convergence rates of the $L^p$-risks for these estimators, investigating on their minimax properties and proving their optimality over a scale of Besov spaces, here taken as nonparametric regularity function spaces.

Code based Language Models (LMs) have shown very promising results in the field of software engineering with applications such as code refinement, code completion and generation. However, the task of time and space complexity classification from code has not been extensively explored due to a lack of datasets, with prior endeavors being limited to Java. In this project, we aim to address these gaps by creating a labelled dataset of code snippets spanning multiple languages (Python and C++ datasets currently, with C, C#, and JavaScript datasets being released shortly). We find that existing time complexity calculation libraries and tools only apply to a limited number of use-cases. The lack of a well-defined rule based system motivates the application of several recently proposed code-based LMs. We demonstrate the effectiveness of dead code elimination and increasing the maximum sequence length of LMs. In addition to time complexity, we propose to use LMs to find space complexities from code, and to the best of our knowledge, this is the first attempt to do so. Furthermore, we introduce a novel code comprehension task, called cross-language transfer, where we fine-tune the LM on one language and run inference on another. Finally, we visualize the activation of the attention fed classification head of our LMs using Non-negative Matrix Factorization (NMF) to interpret our results.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

In structure learning, the output is generally a structure that is used as supervision information to achieve good performance. Considering the interpretation of deep learning models has raised extended attention these years, it will be beneficial if we can learn an interpretable structure from deep learning models. In this paper, we focus on Recurrent Neural Networks (RNNs) whose inner mechanism is still not clearly understood. We find that Finite State Automaton (FSA) that processes sequential data has more interpretable inner mechanism and can be learned from RNNs as the interpretable structure. We propose two methods to learn FSA from RNN based on two different clustering methods. We first give the graphical illustration of FSA for human beings to follow, which shows the interpretability. From the FSA's point of view, we then analyze how the performance of RNNs are affected by the number of gates, as well as the semantic meaning behind the transition of numerical hidden states. Our results suggest that RNNs with simple gated structure such as Minimal Gated Unit (MGU) is more desirable and the transitions in FSA leading to specific classification result are associated with corresponding words which are understandable by human beings.

北京阿比特科技有限公司