Glitch tokens in Large Language Models (LLMs) can trigger unpredictable behaviors, threatening model reliability and safety. Existing detection methods often depend on predefined patterns, limiting their adaptability across diverse LLM architectures. We propose GlitchMiner, a gradient-based discrete optimization framework that efficiently identifies glitch tokens by leveraging entropy to quantify prediction uncertainty and a local search strategy for exploring the token space. Experiments across multiple LLM architectures show that GlitchMiner outperforms existing methods in both detection accuracy and adaptability, achieving over 10% average efficiency improvement. GlitchMiner enhances vulnerability assessment in LLMs, contributing to more robust and reliable applications. Code is available at //github.com/wooozihui/GlitchMiner.
Vision Based Navigation consists in utilizing cameras as precision sensors for GNC after extracting information from images. To enable the adoption of machine learning for space applications, one of obstacles is the demonstration that available training datasets are adequate to validate the algorithms. The objective of the study is to generate datasets of images and metadata suitable for training machine learning algorithms. Two use cases were selected and a robust methodology was developed to validate the datasets including the ground truth. The first use case is in-orbit rendezvous with a man-made object: a mockup of satellite ENVISAT. The second use case is a Lunar landing scenario. Datasets were produced from archival datasets (Chang'e 3), from the laboratory at DLR TRON facility and at Airbus Robotic laboratory, from SurRender software high fidelity image simulator using Model Capture and from Generative Adversarial Networks. The use case definition included the selection of algorithms as benchmark: an AI-based pose estimation algorithm and a dense optical flow algorithm were selected. Eventually it is demonstrated that datasets produced with SurRender and selected laboratory facilities are adequate to train machine learning algorithms.
Open-set object detection (OSOD) is highly desirable for robotic manipulation in unstructured environments. However, existing OSOD methods often fail to meet the requirements of robotic applications due to their high computational burden and complex deployment. To address this issue, this paper proposes a light-weight framework called Decoupled OSOD (DOSOD), which is a practical and highly efficient solution to support real-time OSOD tasks in robotic systems. Specifically, DOSOD builds upon the YOLO-World pipeline by integrating a vision-language model (VLM) with a detector. A Multilayer Perceptron (MLP) adaptor is developed to transform text embeddings extracted by the VLM into a joint space, within which the detector learns the region representations of class-agnostic proposals. Cross-modality features are directly aligned in the joint space, avoiding the complex feature interactions and thereby improving computational efficiency. DOSOD operates like a traditional closed-set detector during the testing phase, effectively bridging the gap between closed-set and open-set detection. Compared to the baseline YOLO-World, the proposed DOSOD significantly enhances real-time performance while maintaining comparable accuracy. The slight DOSOD-S model achieves a Fixed AP of $26.7\%$, compared to $26.2\%$ for YOLO-World-v1-S and $22.7\%$ for YOLO-World-v2-S, using similar backbones on the LVIS minival dataset. Meanwhile, the FPS of DOSOD-S is $57.1\%$ higher than YOLO-World-v1-S and $29.6\%$ higher than YOLO-World-v2-S. Meanwhile, we demonstrate that the DOSOD model facilitates the deployment of edge devices. The codes and models are publicly available at //github.com/D-Robotics-AI-Lab/DOSOD.
The integration of Large Language Models (LLMs) into recommender systems has led to substantial performance improvements. However, this often comes at the cost of diminished recommendation diversity, which can negatively impact user satisfaction. To address this issue, controllable recommendation has emerged as a promising approach, allowing users to specify their preferences and receive recommendations that meet their diverse needs. Despite its potential, existing controllable recommender systems frequently rely on simplistic mechanisms, such as a single prompt, to regulate diversity-an approach that falls short of capturing the full complexity of user preferences. In response to these limitations, we propose DLCRec, a novel framework designed to enable fine-grained control over diversity in LLM-based recommendations. Unlike traditional methods, DLCRec adopts a fine-grained task decomposition strategy, breaking down the recommendation process into three sequential sub-tasks: genre prediction, genre filling, and item prediction. These sub-tasks are trained independently and inferred sequentially according to user-defined control numbers, ensuring more precise control over diversity. Furthermore, the scarcity and uneven distribution of diversity-related user behavior data pose significant challenges for fine-tuning. To overcome these obstacles, we introduce two data augmentation techniques that enhance the model's robustness to noisy and out-of-distribution data. These techniques expose the model to a broader range of patterns, improving its adaptability in generating recommendations with varying levels of diversity. Our extensive empirical evaluation demonstrates that DLCRec not only provides precise control over diversity but also outperforms state-of-the-art baselines across multiple recommendation scenarios.
Graph Neural Networks (GNNs) have demonstrated significant achievements in processing graph data, yet scalability remains a substantial challenge. To address this, numerous graph coarsening methods have been developed. However, most existing coarsening methods are training-dependent, leading to lower efficiency, and they all require a predefined coarsening rate, lacking an adaptive approach. In this paper, we employ granular-ball computing to effectively compress graph data. We construct a coarsened graph network by iteratively splitting the graph into granular-balls based on a purity threshold and using these granular-balls as super vertices. This granulation process significantly reduces the size of the original graph, thereby greatly enhancing the training efficiency and scalability of GNNs. Additionally, our algorithm can adaptively perform splitting without requiring a predefined coarsening rate. Experimental results demonstrate that our method achieves accuracy comparable to training on the original graph. Noise injection experiments further indicate that our method exhibits robust performance. Moreover, our approach can reduce the graph size by up to 20 times without compromising test accuracy, substantially enhancing the scalability of GNNs.
Developers rely on the static safety guarantees of the Rust programming language to write secure and performant applications. However, Rust is frequently used to interoperate with other languages which allow design patterns that conflict with Rust's evolving aliasing models. Miri is currently the only dynamic analysis tool that can validate applications against these models, but it does not support foreign functions, indicating that there may be a critical correctness gap across the Rust ecosystem. We conducted a large-scale evaluation of Rust libraries that call foreign functions to determine whether Miri's dynamic analyses remain useful in this context. We used Miri and an LLVM interpreter to jointly execute applications that call foreign functions, where we found 47 instances of undefined or undesired behavior from 37 libraries. Three bugs were found in libraries that had more than 10,000 daily downloads on average during our observation period, and one was found in a library maintained by the Rust Project. Many of these bugs were violations of Rust's aliasing models, but the latest Tree Borrows model was significantly more permissive than the earlier Stacked Borrows model. The Rust community must invest in new, production-ready tooling for multi-language applications to ensure that developers can detect these errors.
Advanced cyber threats (e.g., Fileless Malware and Advanced Persistent Threat (APT)) have driven the adoption of provenance-based security solutions. These solutions employ Machine Learning (ML) models for behavioral modeling and critical security tasks such as malware and anomaly detection. However, the opacity of ML-based security models limits their broader adoption, as the lack of transparency in their decision-making processes restricts explainability and verifiability. We tailored our solution towards Graph Neural Network (GNN)-based security solutions since recent studies employ GNNs to comprehensively digest system provenance graphs for security critical tasks. To enhance the explainability of GNN-based security models, we introduce PROVEXPLAINER, a framework offering instance-level security-aware explanations using an interpretable surrogate model. PROVEXPLAINER's interpretable feature space consists of discriminant subgraph patterns and graph structural features, which can be directly mapped to the system provenance problem space, making the explanations human understandable. By considering prominent GNN architectures (e.g., GAT and GraphSAGE) for anomaly detection tasks, we show how PROVEXPLAINER synergizes with current state-of-the-art (SOTA) GNN explainers to deliver domain and instance-specific explanations. We measure the explanation quality using the fidelity+/fidelity- metric as used by traditional GNN explanation literature, and we incorporate the precision/recall metric where we consider the accuracy of the explanation against the ground truth. On malware and APT datasets, PROVEXPLAINER achieves up to 29%/27%/25% higher fidelity+, precision and recall, and 12% lower fidelity- respectively, compared to SOTA GNN explainers.
Modern Out-of-Order (OoO) CPUs are complex systems with many components interleaved in non-trivial ways. Pinpointing performance bottlenecks and understanding the underlying causes of program performance issues are critical tasks to fully exploit the performance offered by hardware resources. Current performance debugging approaches rely either on measuring resource utilization, in order to estimate which parts of a CPU induce performance limitations, or on code-based analysis deriving bottleneck information from capacity/throughput models. These approaches are limited by instrumental and methodological precision, present portability constraints across different microarchitectures, and often offer factual information about resource constraints, but not causal hints about how to solve them. This paper presents a novel performance debugging and analysis tool that implements a resource-centric CPU model driven by dynamic binary instrumentation that is capable of detecting complex bottlenecks caused by an interplay of hardware and software factors. Bottlenecks are detected through sensitivity-based analysis, a sort of model parameterization that uses differential analysis to reveal constrained resources. It also implements a new technique we developed that we call causality analysis, that propagates constraints to pinpoint how each instruction contribute to the overall execution time. To evaluate our analysis tool, we considered the set of high-performance computing kernels obtained by applying a wide range of transformations from the Polybench benchmark suite and measured the precision on a few Intel CPU and Arm micro-architectures. We also took one of the benchmarks (correlation) as an illustrative example to illustrate how our tool's bottleneck analysis can be used to optimize a code.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. Although several efforts have been made for CRS, two major issues still remain to be solved. First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference. Second, there is a semantic gap between natural language expression and item-level user preference. To address these issues, we incorporate both word-oriented and entity-oriented knowledge graphs (KG) to enhance the data representations in CRSs, and adopt Mutual Information Maximization to align the word-level and entity-level semantic spaces. Based on the aligned semantic representations, we further develop a KG-enhanced recommender component for making accurate recommendations, and a KG-enhanced dialog component that can generate informative keywords or entities in the response text. Extensive experiments have demonstrated the effectiveness of our approach in yielding better performance on both recommendation and conversation tasks.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.