亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many high-dimensional data sets suffer from hidden confounding which affects both the predictors and the response of interest. In such situations, standard regression methods or algorithms lead to biased estimates. This paper substantially extends previous work on spectral deconfounding for high-dimensional linear models to the nonlinear setting and with this, establishes a proof of concept that spectral deconfounding is valid for general nonlinear models. Concretely, we propose an algorithm to estimate high-dimensional sparse additive models in the presence of hidden dense confounding: arguably, this is a simple yet practically useful nonlinear scope. We prove consistency and convergence rates for our method and evaluate it on synthetic data and a genetic data set.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 縮放 · 樣本 · 可辨認的 · 近似 ·
2024 年 11 月 8 日

Accurate approximation of a real-valued function depends on two aspects of the available data: the density of inputs within the domain of interest and the variation of the outputs over that domain. There are few methods for assessing whether the density of inputs is \textit{sufficient} to identify the relevant variations in outputs -- i.e., the ``geometric scale'' of the function -- despite the fact that sampling density is closely tied to the success or failure of an approximation method. In this paper, we introduce a general purpose, computational approach to detecting the geometric scale of real-valued functions over a fixed domain using a deterministic interpolation technique from computational geometry. The algorithm is intended to work on scalar data in moderate dimensions (2-10). Our algorithm is based on the observation that a sequence of piecewise linear interpolants will converge to a continuous function at a quadratic rate (in $L^2$ norm) if and only if the data are sampled densely enough to distinguish the feature from noise (assuming sufficiently regular sampling). We present numerical experiments demonstrating how our method can identify feature scale, estimate uncertainty in feature scale, and assess the sampling density for fixed (i.e., static) datasets of input-output pairs. We include analytical results in support of our numerical findings and have released lightweight code that can be adapted for use in a variety of data science settings.

Creating accurate and geologically realistic reservoir facies based on limited measurements is crucial for field development and reservoir management, especially in the oil and gas sector. Traditional two-point geostatistics, while foundational, often struggle to capture complex geological patterns. Multi-point statistics offers more flexibility, but comes with its own challenges related to pattern configurations and storage limits. With the rise of Generative Adversarial Networks (GANs) and their success in various fields, there has been a shift towards using them for facies generation. However, recent advances in the computer vision domain have shown the superiority of diffusion models over GANs. Motivated by this, a novel Latent Diffusion Model is proposed, which is specifically designed for conditional generation of reservoir facies. The proposed model produces high-fidelity facies realizations that rigorously preserve conditioning data. It significantly outperforms a GAN-based alternative. Our implementation on GitHub: \url{//github.com/ML4ITS/Latent-Diffusion-Model-for-Conditional-Reservoir-Facies-Generation}.

Offline reinforcement learning learns from a static dataset without interacting with environments, which ensures security and thus owns a good application prospect. However, directly applying naive reinforcement learning algorithm usually fails in an offline environment due to inaccurate Q value approximation caused by out-of-distribution (OOD) state-actions. It is an effective way to solve this problem by penalizing the Q-value of OOD state-actions. Among the methods of punishing OOD state-actions, count-based methods have achieved good results in discrete domains in a simple form. Inspired by it, a novel pseudo-count method for continuous domains called Grid-Mapping Pseudo-Count method (GPC) is proposed by extending the count-based method from discrete to continuous domains. Firstly, the continuous state and action space are mapped to discrete space using Grid-Mapping, then the Q-values of OOD state-actions are constrained through pseudo-count. Secondly, the theoretical proof is given to show that GPC can obtain appropriate uncertainty constraints under fewer assumptions than other pseudo-count methods. Thirdly, GPC is combined with Soft Actor-Critic algorithm (SAC) to get a new algorithm called GPC-SAC. Lastly, experiments on D4RL datasets are given to show that GPC-SAC has better performance and less computational cost than other algorithms that constrain the Q-value.

Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks. While existing adversarial perturbations are primarily applied to uncompressed images or compressed images by the traditional image compression method, i.e., JPEG, limited studies have investigated the robustness of models for image classification in the context of DNN-based image compression. With the rapid evolution of advanced image compression, DNN-based learned image compression has emerged as the promising approach for transmitting images in many security-critical applications, such as cloud-based face recognition and autonomous driving, due to its superior performance over traditional compression. Therefore, there is a pressing need to fully investigate the robustness of a classification system post-processed by learned image compression. To bridge this research gap, we explore the adversarial attack on a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules. Furthermore, to enhance the transferability of perturbations across various quality levels and architectures of learned image compression models, we introduce a saliency score-based sampling method to enable the fast generation of transferable perturbation. Extensive experiments with popular attack methods demonstrate the enhanced transferability of our proposed method when attacking images that have been post-processed with different learned image compression models.

We provide bounds on the tail probabilities for simple procedures that generate random samples _without replacement_, when the probabilities of being selected need not be equal.

Sensitivity measures how much the output of an algorithm changes, in terms of Hamming distance, when part of the input is modified. While approximation algorithms with low sensitivity have been developed for many problems, no sensitivity lower bounds were previously known for approximation algorithms. In this work, we establish the first polynomial lower bound on the sensitivity of (randomized) approximation algorithms for constraint satisfaction problems (CSPs) by adapting the probabilistically checkable proof (PCP) framework to preserve sensitivity lower bounds. From this, we derive polynomial sensitivity lower bounds for approximation algorithms for a variety of problems, including maximum clique, minimum vertex cover, and maximum cut. Given the connection between sensitivity and distributed algorithms, our sensitivity lower bounds also allow us to recover various round complexity lower bounds for distributed algorithms in the LOCAL model. Additionally, we present new lower bounds for distributed CSPs.

Content moderation on a global scale must navigate a complex array of local cultural distinctions, which can hinder effective enforcement. While global policies aim for consistency and broad applicability, they often miss the subtleties of regional language interpretation, cultural beliefs, and local legislation. This work introduces a flexible framework that enhances foundation language models with cultural knowledge. Our approach involves fine-tuning encoder-decoder models on media-diet data to capture cultural nuances, and applies a continued training regime to effectively integrate these models into a content moderation pipeline. We evaluate this framework in a case study of an online podcast platform with content spanning various regions. The results show that our culturally adapted models improve the accuracy of local violation detection and offer explanations that align more closely with regional cultural norms. Our findings reinforce the need for an adaptable content moderation approach that remains flexible in response to the diverse cultural landscapes it operates in and represents a step towards a more equitable and culturally sensitive framework for content moderation, demonstrating what is achievable in this domain.

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

北京阿比特科技有限公司