To facilitate widespread adoption of automated engineering design techniques, existing methods must become more efficient and generalizable. In the field of topology optimization, this requires the coupling of modern optimization methods with solvers capable of handling arbitrary problems. In this work, a topology optimization method for general multiphysics problems is presented. We leverage a convolutional neural parameterization of a level set for a description of the geometry and use this in an unfitted finite element method that is differentiable with respect to the level set everywhere in the domain. We construct the parameter to objective map in such a way that the gradient can be computed entirely by automatic differentiation at roughly the cost of an objective function evaluation. The method produces optimized topologies that are similar in performance yet exhibit greater regularity than baseline approaches on standard benchmarks whilst having the ability to solve a more general class of problems, e.g., interface-coupled multiphysics.
Few-weight codes over finite chain rings are associated with combinatorial objects such as strongly regular graphs (SRGs), strongly walk-regular graphs (SWRGs) and finite geometries, and are also widely used in data storage systems and secret sharing schemes. The first objective of this paper is to characterize all possible parameters of Plotkin-optimal two-homogeneous weight regular projective codes over finite chain rings, as well as their weight distributions. We show the existence of codes with these parameters by constructing an infinite family of two-homogeneous weight codes. The parameters of their Gray images have the same weight distribution as that of the two-weight codes of type SU1 in the sense of Calderbank and Kantor (Bull Lond Math Soc 18: 97-122, 1986). Further, we also construct three-homogeneous weight regular projective codes over finite chain rings combined with some known results. Finally, we study applications of our constructed codes in secret sharing schemes and graph theory. In particular, infinite families of SRGs and SWRGs with non-trivial parameters are obtained.
Network flow problems, which involve distributing traffic over a network such that the underlying infrastructure is used effectively, are ubiquitous in transportation and logistics. Among them, the Multi-Commodity Network Flow (MCNF) problem is of general interest, as it concerns the distribution of multiple flows of different sizes between several sources and sinks, while achieving effective utilization of the links. Due to the appeal of data-driven optimization, these problems have increasingly been approached using graph learning methods. In this paper, we propose a novel graph learning architecture for network flow problems called Per-Edge Weights (PEW). This method builds on a Graph Attention Network and uses distinctly parametrized message functions along each link. We extensively evaluate the proposed solution through an Internet flow routing case study using $17$ Service Provider topologies and $2$ routing schemes. We show that PEW yields substantial gains over architectures whose global message function constrains the routing unnecessarily. We also find that an MLP is competitive with other standard architectures. Furthermore, we shed some light on the relationship between graph structure and predictive performance for data-driven routing of flows, an aspect that has not been considered by existing work in the area.
An experimental comparison of two or more optimization algorithms requires the same computational resources to be assigned to each algorithm. When a maximum runtime is set as the stopping criterion, all algorithms need to be executed in the same machine if they are to use the same resources. Unfortunately, the implementation code of the algorithms is not always available, which means that running the algorithms to be compared in the same machine is not always possible. And even if they are available, some optimization algorithms might be costly to run, such as training large neural-networks in the cloud. In this paper, we consider the following problem: how do we compare the performance of a new optimization algorithm B with a known algorithm A in the literature if we only have the results (the objective values) and the runtime in each instance of algorithm A? Particularly, we present a methodology that enables a statistical analysis of the performance of algorithms executed in different machines. The proposed methodology has two parts. Firstly, we propose a model that, given the runtime of an algorithm in a machine, estimates the runtime of the same algorithm in another machine. This model can be adjusted so that the probability of estimating a runtime longer than what it should be is arbitrarily low. Secondly, we introduce an adaptation of the one-sided sign test that uses a modified \textit{p}-value and takes into account that probability. Such adaptation avoids increasing the probability of type I error associated with executing algorithms A and B in different machines.
Several fundamental problems in science and engineering consist of global optimization tasks involving unknown high-dimensional (black-box) functions that map a set of controllable variables to the outcomes of an expensive experiment. Bayesian Optimization (BO) techniques are known to be effective in tackling global optimization problems using a relatively small number objective function evaluations, but their performance suffers when dealing with high-dimensional outputs. To overcome the major challenge of dimensionality, here we propose a deep learning framework for BO and sequential decision making based on bootstrapped ensembles of neural architectures with randomized priors. Using appropriate architecture choices, we show that the proposed framework can approximate functional relationships between design variables and quantities of interest, even in cases where the latter take values in high-dimensional vector spaces or even infinite-dimensional function spaces. In the context of BO, we augmented the proposed probabilistic surrogates with re-parameterized Monte Carlo approximations of multiple-point (parallel) acquisition functions, as well as methodological extensions for accommodating black-box constraints and multi-fidelity information sources. We test the proposed framework against state-of-the-art methods for BO and demonstrate superior performance across several challenging tasks with high-dimensional outputs, including a constrained multi-fidelity optimization task involving shape optimization of rotor blades in turbo-machinery.
Although numerous clustering algorithms have been developed, many existing methods still leverage k-means technique to detect clusters of data points. However, the performance of k-means heavily depends on the estimation of centers of clusters, which is very difficult to achieve an optimal solution. Another major drawback is that it is sensitive to noise and outlier data. In this paper, from manifold learning perspective, we rethink k-means and present a new clustering algorithm which directly detects clusters of data without mean estimation. Specifically, we construct distance matrix between data points by Butterworth filter such that distance between any two data points in the same clusters equals to a small constant, while increasing the distance between other data pairs from different clusters. To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization on the 3rd-order tensor which consists of indicator matrices of different views. Finally, an efficient alternating algorithm is derived to optimize our model. The constructed sequence was proved to converge to the stationary KKT point. Extensive experimental results indicate the superiority of our proposed method.
We consider a unique continuation problem where the Dirichlet trace of the solution is known to have finite dimension. We prove Lipschitz stability of the unique continuation problem and design a finite element method that exploits the finite dimensionality to enhance stability. Optimal a priori and a posteriori error estimates are shown for the method. The extension to problems where the trace is not in a finite dimensional space, but can be approximated to high accuracy using finite dimensional functions is discussed. Finally, the theory is illustrated in some numerical examples.
Inclusion of contact in mechanical designs opens a large range of design possibilities, this includes classical designs with contact, such as gears, couplings, switches, clamps etc. However, incorporation of contact in topology optimization is challenging, as classical contact models are not readily applicable when the boundaries are not defined. This paper aims to address the limitations of contact in topology optimization by extending the third medium contact method for topology optimization problems with internal contact. When the objective is to maximize a given contact load for a specified displacement, instabilities may arise as an optimum is approached. In order to alleviate stability problems as well as provide robustness of the optimized designs, a tangent stiffness requirement is introduced to the design objective. To avoid a non-physical exploitation of the third medium in optimized designs, small features are penalized by evaluating the volume constraint on a dilated design. The present work incorporates well-established methods in topology optimization including Helmholtz PDE filtering, threshold projection, Solid Isotropic Material Interpolation with Penalization, and the Method of Moving Asymptotes. Three examples are used to illustrate how the approach exploits internal contact in the topology optimization of structures subjected to large deformations.
We propose a novel method called SHS-Net for oriented normal estimation of point clouds by learning signed hyper surfaces, which can accurately predict normals with global consistent orientation from various point clouds. Almost all existing methods estimate oriented normals through a two-stage pipeline, i.e., unoriented normal estimation and normal orientation, and each step is implemented by a separate algorithm. However, previous methods are sensitive to parameter settings, resulting in poor results from point clouds with noise, density variations and complex geometries. In this work, we introduce signed hyper surfaces (SHS), which are parameterized by multi-layer perceptron (MLP) layers, to learn to estimate oriented normals from point clouds in an end-to-end manner. The signed hyper surfaces are implicitly learned in a high-dimensional feature space where the local and global information is aggregated. Specifically, we introduce a patch encoding module and a shape encoding module to encode a 3D point cloud into a local latent code and a global latent code, respectively. Then, an attention-weighted normal prediction module is proposed as a decoder, which takes the local and global latent codes as input to predict oriented normals. Experimental results show that our SHS-Net outperforms the state-of-the-art methods in both unoriented and oriented normal estimation on the widely used benchmarks. The code, data and pretrained models are publicly available.
Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.