亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural-based multi-task learning (MTL) has gained significant improvement, and it has been successfully applied to recommendation system (RS). Recent deep MTL methods for RS (e.g. MMoE, PLE) focus on designing soft gating-based parameter-sharing networks that implicitly learn a generalized representation for each task. However, MTL methods may suffer from performance degeneration when dealing with conflicting tasks, as negative transfer effects can occur on the task-shared bottom representation. This can result in a reduced capacity for MTL methods to capture task-specific characteristics, ultimately impeding their effectiveness and hindering the ability to generalize well on all tasks. In this paper, we focus on the bottom representation learning of MTL in RS and propose the Deep Task-specific Bottom Representation Network (DTRN) to alleviate the negative transfer problem. DTRN obtains task-specific bottom representation explicitly by making each task has its own representation learning network in the bottom representation modeling stage. Specifically, it extracts the user's interests from multiple types of behavior sequences for each task through the parameter-efficient hypernetwork. To further obtain the dedicated representation for each task, DTRN refines the representation of each feature by employing a SENet-like network for each task. The two proposed modules can achieve the purpose of getting task-specific bottom representation to relieve tasks' mutual interference. Moreover, the proposed DTRN is flexible to combine with existing MTL methods. Experiments on one public dataset and one industrial dataset demonstrate the effectiveness of the proposed DTRN. Furthermore, we deploy DTRN in an industrial recommender system and gain remarkable improvements in multiple tasks.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議(yi)。 Publisher:IFIP。 SIT:

Deep learning-based vulnerability detection has shown great performance and, in some studies, outperformed static analysis tools. However, the highest-performing approaches use token-based transformer models, which are not the most efficient to capture code semantics required for vulnerability detection. Classical program analysis techniques such as dataflow analysis can detect many types of bugs based on their root causes. In this paper, we propose to combine such causal-based vulnerability detection algorithms with deep learning, aiming to achieve more efficient and effective vulnerability detection. Specifically, we designed DeepDFA, a dataflow analysis-inspired graph learning framework and an embedding technique that enables graph learning to simulate dataflow computation. We show that DeepDFA is both performant and efficient. DeepDFA outperformed all non-transformer baselines. It was trained in 9 minutes, 75x faster than the highest-performing baseline model. When using only 50+ vulnerable and several hundreds of total examples as training data, the model retained the same performance as 100% of the dataset. DeepDFA also generalized to real-world vulnerabilities in DbgBench; it detected 8.7 out of 17 vulnerabilities on average across folds and was able to distinguish between patched and buggy versions, while the highest-performing baseline models did not detect any vulnerabilities. By combining DeepDFA with a large language model, we surpassed the state-of-the-art vulnerability detection performance on the Big-Vul dataset with 96.46 F1 score, 97.82 precision, and 95.14 recall. Our replication package is located at //doi.org/10.6084/m9.figshare.21225413 .

In-context learning (ICL) is an important capability of Large Language Models (LLMs), enabling these models to dynamically adapt based on specific, in-context exemplars, thereby improving accuracy and relevance. However, LLM's responses may leak the sensitive private information contained in in-context exemplars. To address this challenge, we propose Differentially Private In-context Learning (DP-ICL), a general paradigm for privatizing ICL tasks. The key idea for DP-ICL paradigm is generating differentially private responses through a noisy consensus among an ensemble of LLM's responses based on disjoint exemplar sets. Based on the general paradigm of DP-ICL, we instantiate several techniques showing how to privatize ICL for text classification and language generation. We evaluate DP-ICL on four text classification benchmarks and two language generation tasks, and our empirical results show that DP-ICL achieves a strong utility-privacy tradeoff.

Molecule representation learning is crucial for various downstream applications, such as understanding and predicting molecular properties and side effects. In this paper, we propose a novel method called GODE, which takes into account the two-level structure of individual molecules. We recognize that molecules have an intrinsic graph structure as well as being a node in a larger molecule knowledge graph. GODE integrates graph representations of individual molecules with multidomain biochemical data from knowledge graphs. By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures. This fusion results in a more robust and informative representation, which enhances molecular property prediction by harnessing both chemical and biological information. When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks. Impressively, it surpasses the current leading model in molecule property predictions with average advancements of 2.1% in classification and 6.4% in regression tasks.

Multi-task learning (MTL), a learning paradigm to learn multiple related tasks simultaneously, has achieved great success in various fields. However, task balancing problem remains a significant challenge in MTL, with the disparity in loss/gradient scales often leading to performance compromises. In this paper, we propose a Dual-Balancing Multi-Task Learning (DB-MTL) method to alleviate the task balancing problem from both loss and gradient perspectives. Specifically, DB-MTL ensures loss-scale balancing by performing a logarithm transformation on each task loss, and guarantees gradient-magnitude balancing via normalizing all task gradients to the same magnitude as the maximum gradient norm. Extensive experiments conducted on several benchmark datasets consistently demonstrate the state-of-the-art performance of DB-MTL.

Semi-supervised learning (SSL) is a promising approach for training deep classification models using labeled and unlabeled datasets. However, existing SSL methods rely on a large unlabeled dataset, which may not always be available in many real-world applications due to legal constraints (e.g., GDPR). In this paper, we investigate the research question: Can we train SSL models without real unlabeled datasets? Instead of using real unlabeled datasets, we propose an SSL method using synthetic datasets generated from generative foundation models trained on datasets containing millions of samples in diverse domains (e.g., ImageNet). Our main concepts are identifying synthetic samples that emulate unlabeled samples from generative foundation models and training classifiers using these synthetic samples. To achieve this, our method is formulated as an alternating optimization problem: (i) meta-learning of generative foundation models and (ii) SSL of classifiers using real labeled and synthetic unlabeled samples. For (i), we propose a meta-learning objective that optimizes latent variables to generate samples that resemble real labeled samples and minimize the validation loss. For (ii), we propose a simple unsupervised loss function that regularizes the feature extractors of classifiers to maximize the performance improvement obtained from synthetic samples. We confirm that our method outperforms baselines using generative foundation models on SSL. We also demonstrate that our methods outperform SSL using real unlabeled datasets in scenarios with extremely small amounts of labeled datasets. This suggests that synthetic samples have the potential to provide improvement gains more efficiently than real unlabeled data.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Spatio-temporal representation learning is critical for video self-supervised representation. Recent approaches mainly use contrastive learning and pretext tasks. However, these approaches learn representation by discriminating sampled instances via feature similarity in the latent space while ignoring the intermediate state of the learned representations, which limits the overall performance. In this work, taking into account the degree of similarity of sampled instances as the intermediate state, we propose a novel pretext task - spatio-temporal overlap rate (STOR) prediction. It stems from the observation that humans are capable of discriminating the overlap rates of videos in space and time. This task encourages the model to discriminate the STOR of two generated samples to learn the representations. Moreover, we employ a joint optimization combining pretext tasks with contrastive learning to further enhance the spatio-temporal representation learning. We also study the mutual influence of each component in the proposed scheme. Extensive experiments demonstrate that our proposed STOR task can favor both contrastive learning and pretext tasks. The joint optimization scheme can significantly improve the spatio-temporal representation in video understanding. The code is available at //github.com/Katou2/CSTP.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司