亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Emerging mobility systems such as connected and automated vehicles (CAVs) provide the most intriguing opportunity for more accessible, safe, and efficient transportation. CAVs are expected to significantly improve safety by eliminating the human factor and ensure transportation efficiency by allowing users to monitor transportation network conditions and make better operating decisions. However, CAVs could alter the users' tendency-to-travel, leading to a higher traffic demand than expected, thus causing rebound effects (e.g., increased vehicle-miles-traveled). In this chapter, we focus on tackling social factors that could drive an emerging mobility system to unsustainable congestion levels. We propose a mobility market that models the economic in-nature interactions of the travelers in a smart city network with roads and public transit infrastructure. Using techniques from mechanism design, we introduce appropriate monetary incentives (e.g., tolls, fares, fees) and show how a mobility system consisting of selfish travelers that seek to travel either with a CAV or use public transit can be socially efficient. Furthermore, the proposed mobility market ensures that travelers always report their true travel preferences and always benefit from participating in the market; lastly, we also show that the market generates enough revenue to potentially cover its operating costs.

相關內容

We exploit the complementary strengths of vision and proprioception to achieve point goal navigation in a legged robot. Legged systems are capable of traversing more complex terrain than wheeled robots, but to fully exploit this capability, we need the high-level path planner in the navigation system to be aware of the walking capabilities of the low-level locomotion policy on varying terrains. We achieve this by using proprioceptive feedback to estimate the safe operating limits of the walking policy, and to sense unexpected obstacles and terrain properties like smoothness or softness of the ground that may be missed by vision. The navigation system uses onboard cameras to generate an occupancy map and a corresponding cost map to reach the goal. The FMM (Fast Marching Method) planner then generates a target path. The velocity command generator takes this as input to generate the desired velocity for the locomotion policy using as input additional constraints, from the safety advisor, of unexpected obstacles and terrain determined speed limits. We show superior performance compared to wheeled robot (LoCoBot) baselines, and other baselines which have disjoint high-level planning and low-level control. We also show the real-world deployment of our system on a quadruped robot with onboard sensors and compute. Videos at //navigation-locomotion.github.io/camera-ready

Digital vaccine passports are one of the main solutions which would allow the restart of travel in a post COVID-19 world. Trust, scalability and security are all key challenges one must overcome in implementing a vaccine passport. Initial approaches attempt to solve this problem by using centralised systems with trusted authorities. However, sharing vaccine passport data between different organisations, regions and countries has become a major challenge. This paper designs a new platform architecture for creating, storing and verifying digital COVID-19 vaccine certifications. The platform makes use of the InterPlanetary File System (IPFS) to guarantee there is no single point of failure and allow data to be securely distributed globally. Blockchain and smart contracts are also integrated into the platform to define policies and log access rights to vaccine passport data while ensuring all actions are audited and verifiably immutable. Our proposed platform realises General Data Protection Regulation (GDPR) requirements in terms of user consent, data encryption, data erasure and accountability obligations. We assess the scalability and performance of the platform using IPFS and Blockchain test networks.

Understanding the patterns of human mobility between cities has various applications from transport engineering to spatial modeling of the spreading of contagious diseases. We adopt a city-centric, data-driven perspective to quantify such patterns and introduce the mobility signature as a tool for understanding how a city (or a region) is embedded in the wider mobility network. We demonstrate the potential of the mobility signature approach through two applications that build on mobile-phone-based data from Finland. First, we use mobility signatures to show that the well-known radiation model is more accurate for mobility flows associated with larger cities, while the traditional gravity model appears a better fit for less populated areas. Second, we illustrate how the SARS-CoV-2 pandemic disrupted the mobility patterns in Finland in the spring of 2020. These two cases demonstrate the ability of the mobility signatures to quickly capture features of mobility flows that are harder to extract using more traditional methods.

A mega-constellation of low-altitude earth orbit (LEO) satellites (SATs) are envisaged to provide a global coverage SAT network in beyond fifth-generation (5G) cellular systems. LEO SAT networks exhibit extremely long link distances of many users under time-varying SAT network topology. This makes existing multiple access protocols, such as random access channel (RACH) based cellular protocol designed for fixed terrestrial network topology, ill-suited. To overcome this issue, in this paper, we propose a novel grant-free random access solution for LEO SAT networks, dubbed emergent random access channel protocol (eRACH). In stark contrast to existing model-based and standardized protocols, eRACH is a model-free approach that emerges through interaction with the non-stationary network environment, using multi-agent deep reinforcement learning (MADRL). Furthermore, by exploiting known SAT orbiting patterns, eRACH does not require central coordination or additional communication across users, while training convergence is stabilized through the regular orbiting patterns. Compared to RACH, we show from various simulations that our proposed eRACH yields 54.6% higher average network throughput with around two times lower average access delay while achieving 0.989 Jain's fairness index.

Integrated Sensing And Communication (ISAC)forms a symbiosis between the human need for communication and the need for increasing productivity, by extracting environmental information leveraging the communication network. As multiple sensory already create a perception of the environment, an investigation into the advantages of ISAC compare to such modalities is required. Therefore, we introduce MaxRay, an ISAC framework allowing to simulate communication, sensing, and additional sensory jointly. Emphasizing the challenges for creating such sensing networks, we introduce the required propagation properties for sensing and how they are leveraged. To compare the performance of the different sensing techniques, we analyze four commonly used metrics used in different fields and evaluate their advantages and disadvantages for sensing. We depict that a metric based on prominence is suitable to cover most algorithms. Further we highlight the requirement of clutter removal algorithms, using two standard clutter removal techniques to detect a target in a typical industrial scenario. In general a versatile framework, allowing to create automatically labeled datasets to investigate a large variety of tasks is demonstrated.

The collective attention on online items such as web pages, search terms, and videos reflects trends that are of social, cultural, and economic interest. Moreover, attention trends of different items exhibit mutual influence via mechanisms such as hyperlinks or recommendations. Many visualisation tools exist for time series, network evolution, or network influence; however, few systems connect all three. In this work, we present AttentionFlow, a new system to visualise networks of time series and the dynamic influence they have on one another. Centred around an ego node, our system simultaneously presents the time series on each node using two visual encodings: a tree ring for an overview and a line chart for details. AttentionFlow supports interactions such as overlaying time series of influence and filtering neighbours by time or flux. We demonstrate AttentionFlow using two real-world datasets, VevoMusic and WikiTraffic. We show that attention spikes in songs can be explained by external events such as major awards, or changes in the network such as the release of a new song. Separate case studies also demonstrate how an artist's influence changes over their career, and that correlated Wikipedia traffic is driven by cultural interests. More broadly, AttentionFlow can be generalised to visualise networks of time series on physical infrastructures such as road networks, or natural phenomena such as weather and geological measurements.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

We survey research on self-driving cars published in the literature focusing on autonomous cars developed since the DARPA challenges, which are equipped with an autonomy system that can be categorized as SAE level 3 or higher. The architecture of the autonomy system of self-driving cars is typically organized into the perception system and the decision-making system. The perception system is generally divided into many subsystems responsible for tasks such as self-driving-car localization, static obstacles mapping, moving obstacles detection and tracking, road mapping, traffic signalization detection and recognition, among others. The decision-making system is commonly partitioned as well into many subsystems responsible for tasks such as route planning, path planning, behavior selection, motion planning, and control. In this survey, we present the typical architecture of the autonomy system of self-driving cars. We also review research on relevant methods for perception and decision making. Furthermore, we present a detailed description of the architecture of the autonomy system of the UFES's car, IARA. Finally, we list prominent autonomous research cars developed by technology companies and reported in the media.

With the emergence of Web 2.0, tag recommenders have become important tools, which aim to support users in finding descriptive tags for their bookmarked resources. Although current algorithms provide good results in terms of tag prediction accuracy, they are often designed in a data-driven way and thus, lack a thorough understanding of the cognitive processes that play a role when people assign tags to resources. This thesis aims at modeling these cognitive dynamics in social tagging in order to improve tag recommendations and to better understand the underlying processes. As a first attempt in this direction, we have implemented an interplay between individual micro-level (e.g., categorizing resources or temporal dynamics) and collective macro-level (e.g., imitating other users' tags) processes in the form of a novel tag recommender algorithm. The preliminary results for datasets gathered from BibSonomy, CiteULike and Delicious show that our proposed approach can outperform current state-of-the-art algorithms, such as Collaborative Filtering, FolkRank or Pairwise Interaction Tensor Factorization. We conclude that recommender systems can be improved by incorporating related principles of human cognition.

北京阿比特科技有限公司