In this work, we investigate the recovery of a parameter in a diffusion process given by the order of derivation in time for a class of diffusion type equations, including both classical and time-fractional diffusion equations, from the flux measurement observed at one point on the boundary. The mathematical model for time-fractional diffusion equations involves a Djrbashian-Caputo fractional derivative in time. We prove a uniqueness result in an unknown medium (e.g., diffusion coefficients, obstacle, initial condition and source), i.e., the recovery of the order of derivation in a diffusion process having several pieces of unknown information. The proof relies on the analyticity of the solution at large time, asymptotic decay behavior, strong maximum principle of the elliptic problem and suitable application of the Hopf lemma. Further we provide an easy-to-implement reconstruction algorithm based on a nonlinear least-squares formulation, and several numerical experiments are presented to complement the theoretical analysis.
The solution of time fractional partial differential equations in general exhibit a weak singularity near the initial time. In this article we propose a method for solving time fractional diffusion equation with nonlocal diffusion term. The proposed method comprises L1 scheme on graded mesh, finite element method and Newton's method. We discuss the well-posedness of the weak formulation at discrete level and derive \emph{a priori} error estimates for fully-discrete formulation in $L^2(\Omega)$ and $H^1(\Omega)$ norms. Finally, some numerical experiments are conducted to validate the theoretical findings.
This paper considers the temporal discretization of an inverse problem subject to a time fractional diffusion equation. Firstly, the convergence of the L1 scheme is established with an arbitrary sectorial operator of spectral angle $< \pi/2 $, that is the resolvent set of this operator contains $ \{z\in\mathbb C\setminus\{0\}:\ |\operatorname{Arg} z|< \theta\}$ for some $ \pi/2 < \theta < \pi $. The relationship between the time fractional order $\alpha \in (0, 1)$ and the constants in the error estimates is precisely characterized, revealing that the L1 scheme is robust as $ \alpha $ approaches $ 1 $. Then an inverse problem of a fractional diffusion equation is analyzed, and the convergence analysis of a temporal discretization of this inverse problem is given. Finally, numerical results are provided to confirm the theoretical results.
Recent advances in quantized compressed sensing and high-dimensional estimation have shown that signal recovery is even feasible under strong non-linear distortions in the observation process. An important characteristic of associated guarantees is uniformity, i.e., recovery succeeds for an entire class of structured signals with a fixed measurement ensemble. However, despite significant results in various special cases, a general understanding of uniform recovery from non-linear observations is still missing. This paper develops a unified approach to this problem under the assumption of i.i.d. sub-Gaussian measurement vectors. Our main result shows that a simple least-squares estimator with any convex constraint can serve as a universal recovery strategy, which is outlier robust and does not require explicit knowledge of the underlying non-linearity. Based on empirical process theory, a key technical novelty is an approximative increment condition that can be implemented for all common types of non-linear models. This flexibility allows us to apply our approach to a variety of problems in non-linear compressed sensing and high-dimensional statistics, leading to several new and improved guarantees. Each of these applications is accompanied by a conceptually simple and systematic proof, which does not rely on any deeper properties of the observation model. On the other hand, known local stability properties can be incorporated into our framework in a plug-and-play manner, thereby implying near-optimal error bounds.
This paper is concerned with the efficient spectral solutions for weakly singular nonlocal diffusion equations with Dirichlet-type volume constraints. This type of equation contains an integral operator which typically has a singularity at the midpoint of the integral domain, and the approximation of such the integral operator is one of the essential difficulties in solving the nonlocal equations. To overcome this problem, two-sided Jacobi spectral quadrature rules are proposed to develop a Jacobi spectral collocation method for the nonlocal diffusion equations. Rigorous convergence analysis of the proposed method is presented in $L^\infty$ norms, and we further prove that the Jacobi collocation solution converges to its corresponding local limit as nonlocal interactions vanish. Numerical examples are given to verify the theoretical results.
In this paper, a nonlinear system of fractional ordinary differential equations with multiple scales in time is investigated. We are interested in the effective long-term computation of the solution. The main challenge is how to obtain the solution of the coupled problem at a lower computational cost. We analysize a multiscale method for the nonlinear system where the fast system has a periodic applied force and the slow equation contains fractional derivatives as a simplication of the atherosclerosis with a plaque growth. A local periodic equation is derived to approximate the original system and the error estimates are given. Then a finite difference method is designed to approximate the original and the approximate problems. We construct four examples, including three with exact solutions and one following the original problem setting, to test the accuracy and computational efficiency of the proposed method. It is observed that, the computational time is very much reduced and the multiscale method performs very well in comparison to fully resolved simulation for the case of small time scale separation. The larger the time scale separation is, the more effective the multiscale method is.
We establish summability results for coefficient sequences of Wiener-Hermite polynomial chaos expansions for countably-parametric solutions of linear elliptic and parabolic divergence-form partial differential equations with Gaussian random field inputs. The novel proof technique developed here is based on analytic continuation of parametric solutions into the complex domain. It differs from previous works that used bootstrap arguments and induction on the differentiation order of solution derivatives with respect to the parameters. The present holomorphy-based argument allows a unified, "differentiation-free" sparsity analysis of Wiener-Hermite polynomial chaos expansions in various scales of function spaces. The analysis also implies corresponding results for posterior densities in Bayesian inverse problems subject to Gaussian priors on uncertain inputs from function spaces. Our results furthermore yield dimension-independent convergence rates of various constructive high-dimensional deterministic numerical approximation schemes such as single-level and multi-level versions of anisotropic sparse-grid Hermite-Smolyak interpolation and quadrature in both forward and inverse computational uncertainty quantification.
The aim of this paper is to study the recovery of a spatially dependent potential in a (sub)diffusion equation from overposed final time data. We construct a monotone operator one of whose fixed points is the unknown potential. The uniqueness of the identification is theoretically verified by using the monotonicity of the operator and a fixed point argument. Moreover, we show a conditional stability in Hilbert spaces under some suitable conditions on the problem data. Next, a completely discrete scheme is developed, by using Galerkin finite element method in space and finite difference method in time, and then a fixed point iteration is applied to reconstruct the potential. We prove the linear convergence of the iterative algorithm by the contraction mapping theorem, and present a thorough error analysis for the reconstructed potential. Our derived \textsl{a priori} error estimate provides a guideline to choose discretization parameters according to the noise level. The analysis relies heavily on some suitable nonstandard error estimates for the direct problem as well as the aforementioned conditional stability. Numerical experiments are provided to illustrate and complement our theoretical analysis.
Most, if not all, modern software systems are highly configurable to tailor both their functional and non-functional properties to a variety of stakeholders. Due to the black-box nature, it is difficult, if not impossible, to analyze and understand its behavior, such as the interaction between combinations of configuration options with regard to the performance, in particular, which is of great importance to advance the controllability of the underlying software system. This paper proposes a tool, dubbed LONViZ, which is the first of its kind, to facilitate the exploratory analysis of black-box configurable software systems. It starts from a systematic sampling over the configuration space of the underlying system. Then LONViZ seeks to construct a structurally stable LON by synthesizing multiple repeats of sampling results. Finally, exploratory analysis can be conducted on the stable LON from both qualitative and quantitative perspectives. In experiments, we choose four widely used real-world configurable software systems to develop benchmark platforms under 42 different running environments. From our empirical study, we find that LONViZ enables both qualitative and quantitative analysis and disclose various interesting hidden patterns and properties of different software systems.
Optimization under uncertainty and risk is indispensable in many practical situations. Our paper addresses stability of optimization problems using composite risk functionals which are subjected to measure perturbations. Our main focus is the asymptotic behavior of data-driven formulations with empirical or smoothing estimators such as kernels or wavelets applied to some or to all functions of the compositions. We analyze the properties of the new estimators and we establish strong law of large numbers, consistency, and bias reduction potential under fairly general assumptions. Our results are germane to risk-averse optimization and to data science in general.
We investigate the quality of space approximation of a class of stochastic integral equations of convolution type with Gaussian noise. Such equations arise, for example, when considering mild solutions of stochastic fractional order partial differential equations but also when considering mild solutions of classical stochastic partial differential equations. The key requirement for the equations is a smoothing property of the deterministic evolution operator which is typical in parabolic type problems. We show that if one has access to nonsmooth data estimates for the deterministic error operator together with its derivative of a space discretization procedure, then one obtains error estimates in pathwise H\"older norms with rates that can be read off the deterministic error rates. We illustrate the main result by considering a class of stochastic fractional order partial differential equations and space approximations performed by spectral Galerkin methods and finite elements. We also improve an existing result on the stochastic heat equation.